Home
Class 12
MATHS
int(log(x//e))/((logx)^(2))dx=...

`int(log(x//e))/((logx)^(2))dx=`

A

`(logx)/(x)+c`

B

`(x)/(logx)+c`

C

`(x)/((logx)^(2))+c`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int{log(logx)+(1)/((logx)^(2))}dx

int{log(logx)+(1)/((logx)^(2))}dx=x {f (x)-g(x)}+C , then

int (log x)/(1+logx)^2 dx

Evaluate : int {log(logx)+(1)/((logx)^(2))}dx

Evaluate the following integrals: int{(1)/(logx)-(1)/((log)^(2))}dx

Evaluate : int[(1)/(logx)-(1)/((log x)^(2))]dx

int_(1)^(e)((logx)^(2))/(x)dx=?

int_(0)^(e^(2)){(1)/((logx))-(1)/((logx)^(2))}dx

Evaluate :int_(e)^(e^(2)){(1)/(log x)-(1)/((log x)^(2))}dx

MTG-WBJEE-INDEFINITE INTEGRALS-WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)
  1. int(log(x//e))/((logx)^(2))dx=

    Text Solution

    |

  2. The value of int((x-2)dx)/{(x-2)^(2)(x+3)^(7)}^(1//3) is

    Text Solution

    |