Home
Class 12
MATHS
intcossqrtx dx=...

`intcossqrtx dx=`

A

`-(sin sqrtx)/(2sqrtx)+c`

B

`sqrtx sin sqrtx+cos sqrtx+c`

C

`2(sqrtx sin sqrtx+cos sqrtx)+c`

D

`2[sqrtx sin sqrtx-cos sqrtx]+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \cos(\sqrt{x}) \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t = \sqrt{x} \). Then, we have: \[ x = t^2 \quad \text{and} \quad dx = 2t \, dt \] ### Step 2: Rewrite the Integral Substituting \( t \) and \( dx \) into the integral gives: \[ \int \cos(\sqrt{x}) \, dx = \int \cos(t) \cdot 2t \, dt = 2 \int t \cos(t) \, dt \] ### Step 3: Integration by Parts We will use integration by parts, where we let: - \( u = t \) (first function) - \( dv = \cos(t) \, dt \) (second function) Then, we find: - \( du = dt \) - \( v = \sin(t) \) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int t \cos(t) \, dt = t \sin(t) - \int \sin(t) \, dt \] ### Step 4: Integrate \( \sin(t) \) The integral of \( \sin(t) \) is: \[ \int \sin(t) \, dt = -\cos(t) \] So, substituting back, we have: \[ \int t \cos(t) \, dt = t \sin(t) + \cos(t) \] ### Step 5: Substitute Back Now, substituting back into our integral: \[ 2 \int t \cos(t) \, dt = 2(t \sin(t) + \cos(t)) = 2t \sin(t) + 2\cos(t) \] ### Step 6: Replace \( t \) with \( \sqrt{x} \) Finally, we replace \( t \) with \( \sqrt{x} \): \[ = 2\sqrt{x} \sin(\sqrt{x}) + 2\cos(\sqrt{x}) + C \] ### Final Answer Thus, the integral \( \int \cos(\sqrt{x}) \, dx \) is: \[ \int \cos(\sqrt{x}) \, dx = 2\sqrt{x} \sin(\sqrt{x}) + 2\cos(\sqrt{x}) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos

Similar Questions

Explore conceptually related problems

(i) int cosec x dx =____ (ii) int sec x dx= ____

int(dx)/(cosx+sqrt3 sinx)dx is equal to

int(dx)/(x+sqrt(x))dx

int(dx)/(x+sqrt(x))dx

int(dx)/(xsqrt(1-x^(3)))dx=

intsqrt((a-x)/(a+x))dx-int sqrt((a+x)/(a-x))dx=

int(dx)/(cos x(1+cos x)dx)

(d)/(dx)[intf(x)dx]=

If u and v are two functions of x then prove that : int uv dx = u int v dx - int [ (du)/(dx) int v dx ] dx Hence, evaluate int x e^(x) dx

MTG-WBJEE-INDEFINITE INTEGRALS-WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)
  1. intcossqrtx dx=

    Text Solution

    |

  2. The value of int((x-2)dx)/{(x-2)^(2)(x+3)^(7)}^(1//3) is

    Text Solution

    |