Home
Class 12
MATHS
int(e^(2x)dx)/(root4(e^(x)-1)) equals...

`int(e^(2x)dx)/(root4(e^(x)-1))` equals

A

`(4)/(21)(e^(x)-1)^(3//4)(3e^(x)+4)+c`

B

`((e^(x)-1)^(1//4)(3e^(x)+4))/(21)+c`

C

`(4)/(21)(e^(x)+1)(3e^(x)+4)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{e^{2x}}{\sqrt[4]{e^x - 1}} \, dx, \] we can start by making a substitution to simplify the expression. ### Step 1: Substitution Let \( e^x = t \). Then, \( dx = \frac{dt}{t} \). ### Step 2: Rewrite the Integral Substituting \( e^x \) with \( t \), we have: \[ e^{2x} = (e^x)^2 = t^2, \] and the integral becomes: \[ I = \int \frac{t^2}{\sqrt[4]{t - 1}} \cdot \frac{dt}{t} = \int \frac{t}{\sqrt[4]{t - 1}} \, dt. \] ### Step 3: Rewrite the Integral Now, we can rewrite the integral as: \[ I = \int t (t - 1)^{-1/4} \, dt. \] ### Step 4: Integration by Parts We will use integration by parts. Let's set: - \( u = t \) (thus \( du = dt \)) - \( dv = (t - 1)^{-1/4} dt \) To find \( v \), we need to integrate \( dv \): \[ v = \int (t - 1)^{-1/4} dt. \] Using the power rule, we have: \[ v = \frac{(t - 1)^{3/4}}{3/4} = \frac{4}{3} (t - 1)^{3/4}. \] ### Step 5: Apply Integration by Parts Now we apply the integration by parts formula: \[ I = uv - \int v \, du. \] Substituting \( u \) and \( v \): \[ I = t \cdot \frac{4}{3} (t - 1)^{3/4} - \int \frac{4}{3} (t - 1)^{3/4} dt. \] ### Step 6: Solve the Remaining Integral Now we need to solve the integral \( \int (t - 1)^{3/4} dt \): Using the power rule again: \[ \int (t - 1)^{3/4} dt = \frac{(t - 1)^{7/4}}{7/4} = \frac{4}{7} (t - 1)^{7/4}. \] ### Step 7: Substitute Back Now substituting back into our expression for \( I \): \[ I = t \cdot \frac{4}{3} (t - 1)^{3/4} - \frac{4}{3} \cdot \frac{4}{7} (t - 1)^{7/4} + C. \] ### Step 8: Simplify Combining terms, we have: \[ I = \frac{4}{3} t (t - 1)^{3/4} - \frac{16}{21} (t - 1)^{7/4} + C. \] ### Step 9: Substitute Back for \( t \) Finally, substituting back \( t = e^x \): \[ I = \frac{4}{3} e^x (e^x - 1)^{3/4} - \frac{16}{21} (e^x - 1)^{7/4} + C. \] ### Final Answer Thus, the integral evaluates to: \[ I = \frac{4}{3} e^x (e^x - 1)^{3/4} - \frac{16}{21} (e^x - 1)^{7/4} + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos

Similar Questions

Explore conceptually related problems

int(2e^(x))/(sqrt(4-e^(2x)))dx

int(e^(2x)+1)/(e^(2x)-1)dx=

int(dx)/(e^(x)+e^(-x)) equals

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

int (e^(2x)-1)/(e^(2x)+1) dx=?

" (2) "int(e^(x)dx)/(e^(2x)+4)

int(e^(x)(1+x))/(cos^(2)(e^(x)x))dx equal to

int(e^(x))/((e^(x)-1)(e^(x)+2))dx=

"int(e^(x)-2)/(e^(2x)+4)dx

int_(-pi//4)^(pi//4)(e^(x)(x^(3)sinx))/(e^(2x)-1)dx equals

MTG-WBJEE-INDEFINITE INTEGRALS-WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)
  1. int(e^(2x)dx)/(root4(e^(x)-1)) equals

    Text Solution

    |

  2. The value of int((x-2)dx)/{(x-2)^(2)(x+3)^(7)}^(1//3) is

    Text Solution

    |