Home
Class 12
MATHS
The value of the integral int(dx)/((e^(x...

The value of the integral `int(dx)/((e^(x)+e^(-x)))` is

A

`(1)/(2)(e^(2x)+1)+c`

B

`(1)/(2)(e^(-2x)+1)+c`

C

`-(1)/(2)(e^(2x)+1)^(-1)`

D

`(1)/(4)(e^(2x)-1)+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int(dx)/((e^(x)+e^(-x))^2) is

The value of the integral int_(0)^(1) e^(x^(2))dx lies in the integral

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

If the value of the integral int_(1)^(2)e^(x^(2))dx is alpha, then the value of int_(e)^(e^(4))sqrt(ln x)dx is:

The value of the integral int_(0)^(log5)(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx

The value of the integral int_(-4)^(4)e^(|x|){x}dx is equal to (where {.} denotes the fractional part function)

inte^(x)(e^(x)-e^(-x))dx=

The value of the integral int_0^(log5) (e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx , is

The value of the integral int _(e ^(-1))^(e ^(2))|(ln x )/(x)|dx is:

MTG-WBJEE-INDEFINITE INTEGRALS-WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)
  1. The value of the integral int(dx)/((e^(x)+e^(-x))) is

    Text Solution

    |

  2. The value of int((x-2)dx)/{(x-2)^(2)(x+3)^(7)}^(1//3) is

    Text Solution

    |