Home
Class 12
MATHS
int(sin2xdx)/(1+sin^(2)x)...

`int(sin2xdx)/(1+sin^(2)x)`

A

`tan^(-1)(sinx)+c`

B

`tan^(-1)(cosx)+c`

C

`log(1+sin^(2)x)+c`

D

`log(x+sin^(2)x)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\sin 2x}{1 + \sin^2 x} \, dx \), we can follow these steps: ### Step 1: Rewrite \(\sin 2x\) Using the double angle identity, we can express \(\sin 2x\) as: \[ \sin 2x = 2 \sin x \cos x \] Thus, we can rewrite the integral as: \[ I = \int \frac{2 \sin x \cos x}{1 + \sin^2 x} \, dx \] ### Step 2: Use substitution Let us make the substitution: \[ t = 1 + \sin^2 x \] Now, we need to find \(dt\). The derivative of \(t\) with respect to \(x\) is: \[ dt = 2 \sin x \cos x \, dx \] This implies: \[ dx = \frac{dt}{2 \sin x \cos x} \] ### Step 3: Substitute in the integral Substituting \(t\) and \(dx\) into the integral, we have: \[ I = \int \frac{2 \sin x \cos x}{t} \cdot \frac{dt}{2 \sin x \cos x} \] The \(2 \sin x \cos x\) terms cancel out, leaving us with: \[ I = \int \frac{1}{t} \, dt \] ### Step 4: Integrate The integral of \(\frac{1}{t}\) is: \[ I = \log |t| + C \] Substituting back for \(t\): \[ I = \log |1 + \sin^2 x| + C \] ### Final Answer Thus, the final result of the integral is: \[ I = \log(1 + \sin^2 x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos

Similar Questions

Explore conceptually related problems

int(sin2xdx)/(sin^(2)x+4)

int(sin2xdx)/(sin^(2)x+2cos^(2)x)=

Evaluate int_(0)^( pi)(sin xdx)/(4-sin^(2)x)=

int(xdx)/(1+sin x)

int sin^(2)xdx

The value of sqrt(2)int(sin xdx)/(sin(x-(pi)/(4)))

int x^(2)sin2xdx

int_ (0) ^ ((pi) / (2)) (cos xdx) / (1 + sin ^ (2) x)

int(2-x)sin xdx

int(2-x)sin xdx

MTG-WBJEE-INDEFINITE INTEGRALS-WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)
  1. int(sin2xdx)/(1+sin^(2)x)

    Text Solution

    |

  2. The value of int((x-2)dx)/{(x-2)^(2)(x+3)^(7)}^(1//3) is

    Text Solution

    |