Home
Class 12
MATHS
int(cotx)/(sqrt(sinx))dx=...

`int(cotx)/(sqrt(sinx))dx=`

A

`-(2)/(sqrt(sinx))+c`

B

`(2)/(sqrt(sinx)+c`

C

`2sqrt(sinx)+c`

D

`(1)/(2sqrt(sinx))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\cot x}{\sqrt{\sin x}} \, dx \), we will follow these steps: ### Step 1: Rewrite the integrand We start by rewriting \( \cot x \) in terms of sine and cosine: \[ \cot x = \frac{\cos x}{\sin x} \] Thus, we can rewrite the integral as: \[ \int \frac{\cot x}{\sqrt{\sin x}} \, dx = \int \frac{\cos x}{\sin x \sqrt{\sin x}} \, dx \] ### Step 2: Substitution Next, we will use the substitution \( \sin x = t \). Therefore, the differential \( dx \) can be expressed in terms of \( dt \): \[ \frac{d}{dx}(\sin x) = \cos x \implies dx = \frac{dt}{\cos x} \] Substituting \( \sin x = t \) into the integral gives: \[ \int \frac{\cos x}{t \sqrt{t}} \cdot \frac{dt}{\cos x} = \int \frac{1}{t \sqrt{t}} \, dt \] ### Step 3: Simplify the integrand We can simplify \( \frac{1}{t \sqrt{t}} \) as follows: \[ \frac{1}{t \sqrt{t}} = \frac{1}{t^{3/2}} \] Thus, the integral now becomes: \[ \int t^{-3/2} \, dt \] ### Step 4: Integrate We use the power rule for integration: \[ \int t^n \, dt = \frac{t^{n+1}}{n+1} + C \] In our case, \( n = -\frac{3}{2} \): \[ \int t^{-3/2} \, dt = \frac{t^{-3/2 + 1}}{-3/2 + 1} + C = \frac{t^{-1/2}}{-1/2} + C = -2t^{-1/2} + C \] ### Step 5: Substitute back Now we substitute back \( t = \sin x \): \[ -2(\sin x)^{-1/2} + C = -\frac{2}{\sqrt{\sin x}} + C \] ### Final Answer Thus, the final result for the integral is: \[ \int \frac{\cot x}{\sqrt{\sin x}} \, dx = -\frac{2}{\sqrt{\sin x}} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos

Similar Questions

Explore conceptually related problems

int(cosx)/(sqrt(1+sinx))dx is equal to

int(cotx)/(log(sinx))dx

int(1)/(sqrt(1+sinx))dx=

Evaluate : int(sinx)/(sqrt(1+sinx))dx .

int(sinx+cosx)/(sqrt(1+sin2x))dx

int(sinx)/(sqrt(cos2x))dx=

int(cotx)/(1+sinx)dx=

Evaluate : int(dx)/(sqrt(1-sinx))

int_(0)^(pi)(cosx)/(sqrt(4+3sinx))dx is

MTG-WBJEE-INDEFINITE INTEGRALS-WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)
  1. int(cotx)/(sqrt(sinx))dx=

    Text Solution

    |

  2. The value of int((x-2)dx)/{(x-2)^(2)(x+3)^(7)}^(1//3) is

    Text Solution

    |