Home
Class 12
MATHS
inttan^(-1)sqrt(x) dx is equal to...

`inttan^(-1)sqrt(x) dx` is equal to

A

`xtan^(-1)x-(1)/(2)log(1+x^(2))+c`

B

`x tan^(-1)sqrtx-(1)/(2)log(1+x^(2))+c`

C

`x tan^(-1)sqrtx-sqrtx+log(1+x)+c`

D

`(x+1)tan^(-1)sqrtx-sqrtx+c`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos

Similar Questions

Explore conceptually related problems

int(x^(2)+1)sqrt(x+1)dx is equal to

What is inttan^(-1)(secx+tanx) dx equal to ?

The value of inttan^(3)2xsec2x dx is equal to:

int sqrt(e^(x)-1)dx is equal to

int tan^(-1){sqrt(sqrt(x)-1)}dx is equal to

The value of int(sin^-1sqrt(x)-cos^-1sqrt(x))/(sin^-1sqrt(x)+cos^-1sqrt(x))dx is equal to

The value of the integral int_(-1)^(1)log_(e)(sqrt(1-x)+sqrt(1+x))dx is equal to :

inttan(sin^(-1)x)dx=

int(a^(sqrt(x)))/(sqrt(x))dx is equal to

MTG-WBJEE-INDEFINITE INTEGRALS-WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)
  1. inttan^(-1)sqrt(x) dx is equal to

    Text Solution

    |

  2. The value of int((x-2)dx)/{(x-2)^(2)(x+3)^(7)}^(1//3) is

    Text Solution

    |