Home
Class 12
MATHS
int(dx)/(sinx-cosx)=...

`int(dx)/(sinx-cosx)=`

A

`(1)/(sqrt2)log tan((x)/(2)-(pi)/(8))+c`

B

`logtan((x)/(2)+(pi)/(8))+c`

C

`(1)/(2)logtan((x)/(2)+(pi)/(8))+c`

D

`(1)/(sqrt2)log tan(x+(pi)/(4))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{dx}{\sin x - \cos x}\), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Multiply and Divide by \(\sqrt{2}\)**: We start by multiplying the denominator by \(\sqrt{2}\) and dividing by \(\sqrt{2}\) to simplify the expression: \[ I = \int \frac{dx}{\sin x - \cos x} = \int \frac{\sqrt{2} \, dx}{\sqrt{2}(\sin x - \cos x)} = \frac{1}{\sqrt{2}} \int \frac{dx}{\frac{1}{\sqrt{2}} \sin x - \frac{1}{\sqrt{2}} \cos x} \] 2. **Recognize Trigonometric Values**: We know that \(\sin \frac{\pi}{4} = \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}\). Thus, we can rewrite the integral: \[ I = \frac{1}{\sqrt{2}} \int \frac{dx}{\sin x - \cos x} = \frac{1}{\sqrt{2}} \int \frac{dx}{\sin x - \sin \frac{\pi}{4} \cos x} \] 3. **Use the Sine Difference Formula**: We can express \(\sin x - \cos x\) in terms of a sine function: \[ \sin x - \cos x = \sqrt{2} \left( \sin x \cos \frac{\pi}{4} - \cos x \sin \frac{\pi}{4} \right) = \sqrt{2} \sin\left(x - \frac{\pi}{4}\right) \] Therefore, we can rewrite the integral: \[ I = \frac{1}{\sqrt{2}} \int \frac{dx}{\sqrt{2} \sin\left(x - \frac{\pi}{4}\right)} = \frac{1}{2} \int \frac{dx}{\sin\left(x - \frac{\pi}{4}\right)} \] 4. **Integrate Using Cosecant**: The integral of \(\csc u\) is \(-\ln |\csc u + \cot u| + C\). Thus: \[ I = \frac{1}{2} \left(-\ln |\csc\left(x - \frac{\pi}{4}\right) + \cot\left(x - \frac{\pi}{4}\right)|\right) + C \] 5. **Express in Terms of Tangent**: We can express \(\csc\) and \(\cot\) in terms of tangent: \[ \csc\left(x - \frac{\pi}{4}\right) = \frac{1}{\sin\left(x - \frac{\pi}{4}\right)}, \quad \cot\left(x - \frac{\pi}{4}\right) = \frac{\cos\left(x - \frac{\pi}{4}\right)}{\sin\left(x - \frac{\pi}{4}\right)} \] Thus, we can rewrite the integral as: \[ I = \frac{1}{2} \left(-\ln \left|\frac{1 + \cos\left(x - \frac{\pi}{4}\right)}{\sin\left(x - \frac{\pi}{4}\right)}\right|\right) + C \] 6. **Final Result**: After simplifying, we arrive at the final result: \[ I = \frac{1}{\sqrt{2}} \ln \left|\tan\left(\frac{x}{2} - \frac{\pi}{8}\right)\right| + C \] ### Final Answer: \[ \int \frac{dx}{\sin x - \cos x} = \frac{1}{\sqrt{2}} \ln \left|\tan\left(\frac{x}{2} - \frac{\pi}{8}\right)\right| + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(2sinx-cosx+3)=

int(dx)/((sinx-2cosx)(2sinx+cosx))

int(1)/(sinx-cosx)dx=

Evaluate int(dx)/(2+sinx+cosx).

Evaluate int (dx)/(2sinx+cosx)^2

int(sinx)/((sinx-cosx))dx=?

int(sinx)/(sinx-cosx)dx=

int(dx)/(1+2sinx+cosx)

int(cosx)/(sinx+cosx)dx=

MTG-WBJEE-INDEFINITE INTEGRALS-WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)
  1. int(dx)/(sinx-cosx)=

    Text Solution

    |

  2. The value of int((x-2)dx)/{(x-2)^(2)(x+3)^(7)}^(1//3) is

    Text Solution

    |