Home
Class 12
MATHS
Find int(dx)/((x^(2)+a^(2))(x^(2)+b^(2...

Find `int(dx)/((x^(2)+a^(2))(x^(2)+b^(2)))` equals

A

`(1)/(b^(2)-a^(2))[(1)/(b)tan^(-1)((x)/(a))-(1)/(a) tan^(-1)(x)]+c`

B

`(1)/(b^(2)-a^(2))[(1)/(a)tan^(-1)((x)/(a))-(1)/(b)tan^(-1)((x)/(b))]+c`

C

`(1)/(a)tan^(-1)((x)/(a))+(1)/(b)tan^(-1)((x)/(b))+c`

D

`(1)/(a)tan^(-1)((x)/(a))-(1)/(b)tan^(-1)((x)/(b))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{(x^2 + a^2)(x^2 + b^2)}, \] we will use the method of partial fractions. ### Step 1: Set up the partial fraction decomposition We can express the integrand as: \[ \frac{1}{(x^2 + a^2)(x^2 + b^2)} = \frac{A}{x^2 + a^2} + \frac{B}{x^2 + b^2}, \] where \(A\) and \(B\) are constants to be determined. ### Step 2: Multiply through by the denominator Multiplying both sides by \((x^2 + a^2)(x^2 + b^2)\) gives: \[ 1 = A(x^2 + b^2) + B(x^2 + a^2). \] ### Step 3: Expand and collect like terms Expanding the right side, we have: \[ 1 = Ax^2 + Ab^2 + Bx^2 + Ba^2 = (A + B)x^2 + (Ab^2 + Ba^2). \] ### Step 4: Set up equations for coefficients For the equation to hold for all \(x\), the coefficients of \(x^2\) must be equal to zero, and the constant terms must equal one: 1. \(A + B = 0\) 2. \(Ab^2 + Ba^2 = 1\) ### Step 5: Solve the system of equations From the first equation, we can express \(B\) in terms of \(A\): \[ B = -A. \] Substituting \(B\) into the second equation gives: \[ A b^2 - A a^2 = 1 \implies A(b^2 - a^2) = 1 \implies A = \frac{1}{b^2 - a^2}. \] Then, \[ B = -\frac{1}{b^2 - a^2}. \] ### Step 6: Rewrite the integral Now substituting \(A\) and \(B\) back into the partial fractions gives: \[ \frac{1}{(x^2 + a^2)(x^2 + b^2)} = \frac{1}{b^2 - a^2} \left( \frac{1}{x^2 + a^2} - \frac{1}{x^2 + b^2} \right). \] Thus, we rewrite the integral \(I\): \[ I = \int \frac{1}{(x^2 + a^2)(x^2 + b^2)} \, dx = \frac{1}{b^2 - a^2} \left( \int \frac{1}{x^2 + a^2} \, dx - \int \frac{1}{x^2 + b^2} \, dx \right). \] ### Step 7: Evaluate the integrals We know that: \[ \int \frac{1}{x^2 + c^2} \, dx = \frac{1}{c} \tan^{-1} \left( \frac{x}{c} \right) + C. \] Thus, we have: \[ \int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) + C, \] \[ \int \frac{1}{x^2 + b^2} \, dx = \frac{1}{b} \tan^{-1} \left( \frac{x}{b} \right) + C. \] ### Step 8: Substitute back into the integral Substituting these results back, we get: \[ I = \frac{1}{b^2 - a^2} \left( \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) - \frac{1}{b} \tan^{-1} \left( \frac{x}{b} \right) \right) + C. \] ### Final Result Thus, the final result for the integral is: \[ I = \frac{1}{b^2 - a^2} \left( \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) - \frac{1}{b} \tan^{-1} \left( \frac{x}{b} \right) \right) + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE)|10 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|1 Videos
  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos

Similar Questions

Explore conceptually related problems

int(x)/((x^(2)-a^(2))(x^(2)-b^(2)))dx

int(x)/((x^(2)-a^(2))(x^(2)-b^(2)))dx is equal to

Evaluate: int(x)/((x^(2)-a^(2))(x^(2)-b^(2)))dx

int(dx)/(x^(2)sqrt(a^(2)x^(2)+1)) equals

find (int(2x)/(x^(2)+1)+x^(2))dx

int(dx)/(a^(2)sin^(2)x+b^(2)cos^(2)x) is equal to

What is int (dx)/(a^(2) sin^(2)x + b^(2) cos^(2)x) equal to ?

int(x)/((x^(2)+1)(x^(2)+2))dx is equal to

Evaluate: int(x^(2))/((x^(2)+a^(2))(x^(2)+b^(2)))dx

What is int(dx)/(a^(2)sin^(2)x+b^(2)cos^(2)x) equal to ?