Home
Class 12
MATHS
If int(1)/(4sin^(2)x+4sin x cos x+5cos^(...

If `int(1)/(4sin^(2)x+4sin x cos x+5cos^(2)x)dx=A tan^(-1)(B tanx+C)+k`, then

A

`A=1//4, B=1//2, C=1`

B

`A=1//2, B=1//4,C=1`

C

`A=1, B=1//2, C=1//4`

D

`A=1//4, B=1, C=1//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \, dx, \] we will simplify the expression in the denominator and then perform the integration. ### Step 1: Simplify the Denominator The denominator can be rewritten as: \[ 4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x. \] We can group and rearrange the terms: \[ = 4 \sin^2 x + 4 \sin x \cos x + 4 \cos^2 x + \cos^2 x = 4(\sin^2 x + \sin x \cos x + \cos^2 x) + \cos^2 x. \] Using the identity \(\sin^2 x + \cos^2 x = 1\), we have: \[ = 4(1 + \sin x \cos x) + \cos^2 x = 4 + 4 \sin x \cos x + \cos^2 x. \] ### Step 2: Use Trigonometric Identities Notice that: \[ \sin x \cos x = \frac{1}{2} \sin(2x). \] Thus, we can rewrite the denominator as: \[ = 4 + 2 \sin(2x) + \cos^2 x. \] ### Step 3: Rewrite the Integral Now, we can rewrite the integral: \[ \int \frac{1}{4 + 2 \sin(2x) + \cos^2 x} \, dx. \] ### Step 4: Substitute To simplify further, we can divide the entire expression by \(\cos^2 x\): \[ = \int \frac{\sec^2 x}{4 \tan^2 x + 4 \tan x + 5} \, dx. \] Let \(t = \tan x\), then \(dt = \sec^2 x \, dx\), and thus: \[ dx = \frac{dt}{\sec^2 x}. \] The integral becomes: \[ \int \frac{1}{4t^2 + 4t + 5} \, dt. \] ### Step 5: Completing the Square Now, we complete the square in the denominator: \[ 4t^2 + 4t + 5 = 4(t^2 + t) + 5 = 4\left(t^2 + t + \frac{1}{4}\right) + 5 - 4 \cdot \frac{1}{4} = 4\left(t + \frac{1}{2}\right)^2 + 4. \] ### Step 6: Rewrite the Integral The integral now looks like: \[ \int \frac{1}{4\left(t + \frac{1}{2}\right)^2 + 4} \, dt = \frac{1}{4} \int \frac{1}{\left(t + \frac{1}{2}\right)^2 + 1} \, dt. \] ### Step 7: Use the Arctangent Integral Formula Using the formula \(\int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + C\): \[ = \frac{1}{4} \cdot \frac{1}{1} \tan^{-1}\left(t + \frac{1}{2}\right) + C = \frac{1}{4} \tan^{-1}\left(t + \frac{1}{2}\right) + C. \] ### Step 8: Substitute Back for \(t\) Substituting back \(t = \tan x\): \[ = \frac{1}{4} \tan^{-1}\left(\tan x + \frac{1}{2}\right) + C. \] ### Final Result Thus, we have: \[ \int \frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \, dx = \frac{1}{4} \tan^{-1}\left(2 \tan x + 1\right) + C. \] ### Comparison From the original problem, we can compare: \[ A = \frac{1}{4}, \quad B = 2, \quad C = 1. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE)|10 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|1 Videos
  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos

Similar Questions

Explore conceptually related problems

int(1)/(sin^(2)x-4 cos^(2)x)dx

int(dx)/(4sin^(2)x+9cos^(2)x)

If int(sin2x)/(sin^(4)x+cos^(4)x)dx=tan^(-1)(tan^kx)+c , then k is=

Evaluate: int(1)/(sin^(4)x+sin^(2)x cos^(2)x+cos^(4)x)dx

int(1)/(cos x(5-4sin x))dx

If int(sin2x)/(sin^(4)x+cos^(4)x)dx=tan^(-1)[f(x)]+c , then f(pi/3)=

int (1) / (sin ^ (4) x + sin ^ (2) x cos ^ (2) x + cos ^ (4) x) dx

int(sin^3x+sin^5x)/(cos^2x+cos^4x)dx

int 1/(sin^2x cos^4x)dx