Home
Class 12
MATHS
int(dx)/(1+2sinx+cosx)...

`int(dx)/(1+2sinx+cosx)`

A

`log(2sinx+cosx)=`

B

`log(2+2tan""(x)/(2))+c`

C

`(1)/(2)log(1-2tan""(x)/(2))+c`

D

`(1)/(2)log(1+2tan""(x)/(2))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{dx}{1 + 2 \sin x + \cos x} \), we can follow these steps: ### Step 1: Rewrite the Denominator We start with the expression in the denominator: \[ 1 + 2 \sin x + \cos x \] Using the identities for sine and cosine, we can express this in terms of \( \tan \frac{x}{2} \): \[ \sin x = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \quad \text{and} \quad \cos x = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \] Substituting these into the denominator gives: \[ 1 + 2 \left( \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right) + \left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right) \] ### Step 2: Simplify the Denominator Combining the terms in the denominator: \[ = \frac{(1 + \tan^2 \frac{x}{2}) + 4 \tan \frac{x}{2} + (1 - \tan^2 \frac{x}{2})}{1 + \tan^2 \frac{x}{2}} \] This simplifies to: \[ = \frac{2 + 4 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \] ### Step 3: Rewrite the Integral Now our integral becomes: \[ I = \int \frac{1 + \tan^2 \frac{x}{2}}{2 + 4 \tan \frac{x}{2}} \, dx \] ### Step 4: Use Substitution Let \( t = \tan \frac{x}{2} \). Then, we know: \[ dx = \frac{2}{1 + t^2} dt \] Substituting this into the integral gives: \[ I = \int \frac{1 + t^2}{2 + 4t} \cdot \frac{2}{1 + t^2} dt = 2 \int \frac{1}{2 + 4t} dt \] ### Step 5: Integrate Now we can integrate: \[ I = 2 \cdot \frac{1}{4} \ln |2 + 4t| + C = \frac{1}{2} \ln |2 + 4t| + C \] ### Step 6: Back Substitute Substituting back \( t = \tan \frac{x}{2} \): \[ I = \frac{1}{2} \ln |2 + 4 \tan \frac{x}{2}| + C \] ### Step 7: Final Result We can express this as: \[ I = \frac{1}{2} \ln |1 + 2 \tan \frac{x}{2}| + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE)|10 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|1 Videos
  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos

Similar Questions

Explore conceptually related problems

int (dx)/(sinx cosx)=

int(dx)/(2sinx-cosx+3)=

Evaluate int (dx)/(2sinx+cosx)^2

Evaluate int(dx)/(2+sinx+cosx).

int(dx)/(sinx+cosx)=

int(dx)/(sinx-cosx)=

Evaluate int (dx)/(sinx+cosx)^2