Home
Class 12
MATHS
intxe^(2x)(1+x)dx equals...

`intxe^(2x)(1+x)dx` equals

A

`(xe^(x))/(2)+e+c`

B

`((e^(x))^(2))/(2)+c`

C

`((1+x)^(2))/(2)+c`

D

`((e^(x)x)^(2))/(2)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x e^{2x} (1+x) \, dx \), we will use integration by parts and substitution. Here’s a step-by-step solution: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int x e^{2x} (1+x) \, dx \] This can be expanded as: \[ I = \int x e^{2x} \, dx + \int x^2 e^{2x} \, dx \] ### Step 2: Solve the First Integral Let’s first solve \( \int x e^{2x} \, dx \) using integration by parts. We choose: - \( u = x \) (thus \( du = dx \)) - \( dv = e^{2x} \, dx \) (thus \( v = \frac{1}{2} e^{2x} \)) Using integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int x e^{2x} \, dx = x \cdot \frac{1}{2} e^{2x} - \int \frac{1}{2} e^{2x} \, dx \] Now, we calculate the remaining integral: \[ \int e^{2x} \, dx = \frac{1}{2} e^{2x} \] Thus, \[ \int x e^{2x} \, dx = \frac{1}{2} x e^{2x} - \frac{1}{4} e^{2x} \] ### Step 3: Solve the Second Integral Next, we solve \( \int x^2 e^{2x} \, dx \) again using integration by parts. We choose: - \( u = x^2 \) (thus \( du = 2x \, dx \)) - \( dv = e^{2x} \, dx \) (thus \( v = \frac{1}{2} e^{2x} \)) Using integration by parts: \[ \int x^2 e^{2x} \, dx = x^2 \cdot \frac{1}{2} e^{2x} - \int \frac{1}{2} e^{2x} \cdot 2x \, dx \] This simplifies to: \[ \int x^2 e^{2x} \, dx = \frac{1}{2} x^2 e^{2x} - \int x e^{2x} \, dx \] We already computed \( \int x e^{2x} \, dx \): \[ \int x^2 e^{2x} \, dx = \frac{1}{2} x^2 e^{2x} - \left( \frac{1}{2} x e^{2x} - \frac{1}{4} e^{2x} \right) \] Combining these results gives: \[ \int x^2 e^{2x} \, dx = \frac{1}{2} x^2 e^{2x} - \frac{1}{2} x e^{2x} + \frac{1}{4} e^{2x} \] ### Step 4: Combine the Results Now, we combine the results from both integrals: \[ I = \left( \frac{1}{2} x e^{2x} - \frac{1}{4} e^{2x} \right) + \left( \frac{1}{2} x^2 e^{2x} - \frac{1}{2} x e^{2x} + \frac{1}{4} e^{2x} \right) \] Simplifying this gives: \[ I = \frac{1}{2} x^2 e^{2x} - \frac{1}{4} e^{2x} + \frac{1}{4} e^{2x} \] Thus, the final result is: \[ I = \frac{1}{2} x^2 e^{2x} + C \] ### Final Answer \[ \int x e^{2x} (1+x) \, dx = \frac{1}{2} x^2 e^{2x} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE)|10 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|1 Videos
  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos

Similar Questions

Explore conceptually related problems

intxe^(2x)dx=?

If f(x)={{:(x,xlt1),(x-1,xge1):} , then underset(0)overset(2)intx^(2)f(x) dx is equal to :

intx(x+1)(x+2)dx=

intx^2(1-1/x^2)dx

intx^(4)e^(2x)dx=

intx^x(1+logx)dx

If intxe^(2x)dx is equal to e^(2x)f(x)+c , where c is constant of integration, then f(x) is

intxe^(x)dx=?

intx^2/sqrt(1-x)dx