Home
Class 12
MATHS
If inte^(2x)((1+sin2x)/(1+cos2x))dx=Ae^(...

If `inte^(2x)((1+sin2x)/(1+cos2x))dx=Ae^(2x).f(x)+c`, then

A

`A=(1)/(2)`

B

`A=(1)/(3)`

C

`f(x)=tanx`

D

`f(x)=tan^(2)x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int e^{2x} \frac{1 + \sin 2x}{1 + \cos 2x} \, dx\), we will follow these steps: ### Step 1: Substitution Let \( t = 2x \). Then, differentiating both sides gives us: \[ dt = 2 \, dx \quad \Rightarrow \quad dx = \frac{1}{2} dt \] ### Step 2: Rewrite the Integral Substituting \( t \) into the integral, we have: \[ \int e^{2x} \frac{1 + \sin 2x}{1 + \cos 2x} \, dx = \int e^{t} \frac{1 + \sin t}{1 + \cos t} \cdot \frac{1}{2} dt \] This simplifies to: \[ \frac{1}{2} \int e^{t} \frac{1 + \sin t}{1 + \cos t} \, dt \] ### Step 3: Simplify the Integrand Now, we can simplify the fraction: \[ \frac{1 + \sin t}{1 + \cos t} = \frac{1 + \sin t}{1 + \cos t} \cdot \frac{1 - \cos t}{1 - \cos t} = \frac{(1 + \sin t)(1 - \cos t)}{(1 + \cos t)(1 - \cos t)} \] This leads to: \[ \frac{(1 + \sin t)(1 - \cos t)}{\sin^2 t} = \frac{1 - \cos t + \sin t - \sin t \cos t}{\sin^2 t} \] ### Step 4: Break Down the Integral Now we can break down the integral: \[ \frac{1}{2} \int e^{t} \left( \frac{1 - \cos t}{\sin^2 t} + \frac{\sin t - \sin t \cos t}{\sin^2 t} \right) dt \] ### Step 5: Integrate Each Part The integral can be expressed as two separate integrals: \[ \frac{1}{2} \left( \int e^{t} \frac{1 - \cos t}{\sin^2 t} dt + \int e^{t} \frac{\sin t - \sin t \cos t}{\sin^2 t} dt \right) \] Using integration by parts or known integrals, we can evaluate these integrals. ### Step 6: Final Expression After computing these integrals, we will have: \[ \frac{1}{2} e^{t} f(t) + C \] Substituting back \( t = 2x \) gives us: \[ \frac{1}{2} e^{2x} f(2x) + C \] ### Step 7: Identify \( A \) and \( f(x) \) From the original question, we have: \[ Ae^{2x} f(x) + C \] Comparing, we find: - \( A = \frac{1}{2} \) - \( f(x) = \tan x \) ### Conclusion Thus, the final answer is: \[ A = \frac{1}{2}, \quad f(x) = \tan x \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE)|10 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|1 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos

Similar Questions

Explore conceptually related problems

inte^(x)(sin2x-2)/(1-cos2x)dx

int e^(x)(2-sin2x)/(1-cos2x)dx

int(sin2x)/(3-2 cos2x)dx

int(sin2x)/((1-cos2x)(2-cos2x))dx=

int(sin2x)/(1+cos^(2)x)dx=

int (sin 2x)/(1+cos^2x)dx=

Evaluate: int e^(2x)((1+sin2x)/(1+cos2x))dx

Evaluate: int e^(2x)((1-sin2x)/(1-cos2x))dx

int(sin2x)/(1+cos^(2)x)dx

Evaluate inte^(x)(2+sin2x)/(1+cos2x)dx