Home
Class 12
MATHS
If int(dx)/(cos(x-a)cos(x-b))=(1)/(A)[lo...

If `int(dx)/(cos(x-a)cos(x-b))=(1)/(A)[log((f(x))/(g(x)))]+c`, then

A

`A=sin(a-b)`

B

`f(x)=sec(x-b)`

C

`g(x)=sec(x-a)`

D

`A=sin(b-a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{dx}{\cos(x-a) \cos(x-b)}, \] we will use a substitution method and properties of trigonometric functions. Let's go through the solution step by step. ### Step 1: Substitution Let’s set \( t = x - a \). Then, we have: \[ dx = dt. \] Substituting this into the integral gives: \[ \int \frac{dt}{\cos(t) \cos(t + (b - a))}. \] ### Step 2: Rewrite the Integral Now, we can rewrite the cosine term: \[ \cos(t + (b - a)) = \cos(t) \cos(b - a) - \sin(t) \sin(b - a). \] Thus, the integral becomes: \[ \int \frac{dt}{\cos(t) \left( \cos(t) \cos(b - a) - \sin(t) \sin(b - a) \right)}. \] ### Step 3: Simplifying the Integral This can be simplified as: \[ \int \frac{dt}{\cos^2(t) \cos(b - a) - \sin(t) \sin(b - a) \cos(t)}. \] ### Step 4: Factor Out Terms Now, we can factor out \(\cos(t)\): \[ \int \frac{dt}{\cos(t) \left( \cos(t) \cos(b - a) - \sin(t) \sin(b - a) \right)}. \] ### Step 5: Use Trigonometric Identities We can use the identity for tangent: \[ \frac{1}{\cos(t)} = \sec(t). \] Thus, we can rewrite the integral as: \[ \int \sec(t) \frac{dt}{\cos(t) \cos(b - a) - \sin(t) \sin(b - a)}. \] ### Step 6: Change of Variable Let’s set \( v = \tan(t) \), then \( dt = \frac{dv}{\sec^2(t)} \). This gives us: \[ \int \frac{1}{\cos(b - a) - v \sin(b - a)} dv. \] ### Step 7: Integrate This integral can be solved using the formula for the integral of a rational function. The result will be: \[ \frac{1}{\sin(b - a)} \ln \left| \cos(b - a) + v \sin(b - a) \right| + C. \] ### Step 8: Back Substitution Now, we substitute back \( v = \tan(t) \) and \( t = x - a \): \[ \frac{1}{\sin(b - a)} \ln \left| \cos(b - a) + \tan(x - a) \sin(b - a) \right| + C. \] ### Final Result Thus, we have: \[ \int \frac{dx}{\cos(x-a) \cos(x-b)} = \frac{1}{\sin(b - a)} \ln \left| \cos(b - a) + \tan(x - a) \sin(b - a) \right| + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE)|10 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|1 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos

Similar Questions

Explore conceptually related problems

If int(k)/(cos(x-a)cos(x-b))dx=log[(cos(x-a))/(cos(x-b))]+c , then k=

If int(k)/(sin(x-a)cos(x-b))dx=log[(sin(x-a))/(cos(x-b))]+c , then k=

If int(1)/(cos(x-a)cos(x+a))dx=mlog[(cos(x-a))/(cos(x+a))]+c , then m=

If int(1)/(sin(x-a)cos(x-a))dx=log[f(x)]+c , then f(x)=

If int (1)/(sin (x -a ) cos (x -b)) dx = A log | (sin (x -a))/( cos (x -b ))| + B. Then

int(1)/(x cos^(2)(log_(e)x))dx

If I=int(x^(3)-1)/(x^(5)+x^(4)+x+1)dx=(1)/(4)ln(f(x))-ln(g(x))+c (where, c is the constant of integration) and f(0)=g(0)=1 ,then the value of f(1).g(1) is equal to

int(1)/(x cos^(2)(1+log x))dx