Home
Class 12
MATHS
If int(log(x)e.log(ex)e.log(e^(2)x)e)/(x...

If `int(log_(x)e.log_(ex)e.log_(e^(2)x)e)/(x)dx=A log_(e)(log_(e)x)+Blog_(e)(1+log_(e)x)+Clog_(e)(2+log_(e)x)+lambda,` then

A

`A+B=0`

B

`A+B=-1//2`

C

`A+C=0`

D

`A-C=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integral \[ I = \int \frac{\log_e x \cdot \log_e e \cdot \log_e (e^2 x)}{x} \, dx, \] we will first simplify the expression inside the integral. ### Step 1: Simplifying the Logarithm Expressions Using the properties of logarithms, we can rewrite: 1. \(\log_e e = 1\) 2. \(\log_e (e^2 x) = \log_e (e^2) + \log_e x = 2 + \log_e x\) Thus, the integral becomes: \[ I = \int \frac{\log_e x \cdot 1 \cdot (2 + \log_e x)}{x} \, dx = \int \frac{\log_e x (2 + \log_e x)}{x} \, dx. \] ### Step 2: Expanding the Integral Now, we can expand the integrand: \[ I = \int \frac{2 \log_e x}{x} \, dx + \int \frac{(\log_e x)^2}{x} \, dx. \] ### Step 3: Substituting for Integration Let \(t = \log_e x\). Then, \(dx = e^t \, dt\) and \(x = e^t\). Thus, \(\frac{1}{x} = e^{-t}\). Now, substituting into the integral: 1. For the first integral: \[ \int \frac{2 \log_e x}{x} \, dx = \int 2t \cdot e^{-t} \cdot e^t \, dt = \int 2t \, dt = t^2 = (\log_e x)^2. \] 2. For the second integral: \[ \int \frac{(\log_e x)^2}{x} \, dx = \int t^2 \cdot e^{-t} \cdot e^t \, dt = \int t^2 \, dt = \frac{t^3}{3} = \frac{(\log_e x)^3}{3}. \] ### Step 4: Combining the Results Combining both parts, we have: \[ I = (\log_e x)^2 + \frac{(\log_e x)^3}{3} + C, \] where \(C\) is the constant of integration. ### Step 5: Final Expression Thus, we can express the integral as: \[ I = \frac{1}{3} (\log_e x)^3 + (\log_e x)^2 + C. \] ### Step 6: Comparing with Given Expression The given expression is: \[ A \log_e (\log_e x) + B \log_e (1 + \log_e x) + C \log_e (2 + \log_e x) + \lambda. \] By comparing coefficients, we can find the values of \(A\), \(B\), and \(C\). ### Conclusion From the integration, we find: - \(A = \frac{1}{3}\) - \(B = 1\) - \(C = 0\)
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE)|10 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|1 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos

Similar Questions

Explore conceptually related problems

int(e^(log_(e)x))/(x)dx

int(e^(log_(e)x))/(x)dx

int(e^(log_(e)x))/(x)dx

I=int(log_(e)(log_(e)x))/(x(log_(e)x))dx

if log_(e)(x-1) + log_(e)(x) + log_(e)(x+1)=0 , then

(d)/(dx)log_(7)(log_(7)x)= (a) (1)/(x log_(e)x) (b) (log_(e)7)/(x log_(e)x) (c) (log_(7)e)/(x log_(e)x) (d) (log_(7)e)/(x log_(7)x)

int (dx)/(x(1+log_(e)x)(3+log_(e)x))

(d)/(dx)(e^(log_(e)x^(3)))

Evaluate: int(log_(ex)e*log_(epsilon^(2)x)e*log_(e^(3)x)e)/(x)dx

int e^(log_(e)x)dx