Home
Class 12
MATHS
int(1)/(sqrt((x-2)(x-3)))dx=...

`int(1)/(sqrt((x-2)(x-3)))dx=`

A

`log|(x+(5)/(2))+sqrt(x^(2)+5x+6)|+c`

B

`log|(x-(5)/(2))+sqrt(x^(2)-5x+6)|+c`

C

`log|(x-(5)/(2))+sqrt(x^(2)+5x+6)|+c`

D

`log|(x-(5)/(2))+sqrt(x^(2)-5x-6)|+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{\sqrt{(x-2)(x-3)}} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \frac{1}{\sqrt{(x-2)(x-3)}} \, dx \] We can expand the expression inside the square root: \[ (x-2)(x-3) = x^2 - 5x + 6 \] Thus, the integral becomes: \[ \int \frac{1}{\sqrt{x^2 - 5x + 6}} \, dx \] ### Step 2: Complete the Square Next, we complete the square for the quadratic expression \( x^2 - 5x + 6 \): \[ x^2 - 5x + 6 = \left(x - \frac{5}{2}\right)^2 - \frac{25}{4} + 6 \] Calculating the constant term: \[ 6 = \frac{24}{4} \quad \text{so,} \quad -\frac{25}{4} + \frac{24}{4} = -\frac{1}{4} \] Thus, we have: \[ x^2 - 5x + 6 = \left(x - \frac{5}{2}\right)^2 - \frac{1}{4} \] Now, substituting this back into the integral gives: \[ \int \frac{1}{\sqrt{\left(x - \frac{5}{2}\right)^2 - \left(\frac{1}{2}\right)^2}} \, dx \] ### Step 3: Use the Standard Integral Formula We can now use the standard result for the integral: \[ \int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln |x + \sqrt{x^2 - a^2}| + C \] In our case, \( a = \frac{1}{2} \) and \( x \) is replaced with \( x - \frac{5}{2} \): \[ \int \frac{1}{\sqrt{\left(x - \frac{5}{2}\right)^2 - \left(\frac{1}{2}\right)^2}} \, dx = \ln \left| x - \frac{5}{2} + \sqrt{\left(x - \frac{5}{2}\right)^2 - \left(\frac{1}{2}\right)^2} \right| + C \] ### Step 4: Substitute Back Substituting back, we have: \[ \int \frac{1}{\sqrt{(x-2)(x-3)}} \, dx = \ln \left| x - \frac{5}{2} + \sqrt{\left(x - \frac{5}{2}\right)^2 - \frac{1}{4}} \right| + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{1}{\sqrt{(x-2)(x-3)}} \, dx = \ln \left| x - \frac{5}{2} + \sqrt{(x-2)(x-3)} \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE)|10 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|1 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos

Similar Questions

Explore conceptually related problems

int(1)/(sqrt(3x-2))dx

int(1)/(sqrt(x+2)-sqrt(x-3))dx

int(1)/(sqrt(2x^(2)+2x+3))dx

int(1)/(sqrt(2x^(2)+3x-2))dx

int(x+1)/(sqrt(2x^(2)+x-3))dx

int(1)/(sqrt((x^(2)+3x+1)))dx

int(1)/(sqrt(4x^(2)-4x+3))dx=

Evaluate int(1)/(sqrt(x^(2)-2x+3))dx

int(4x+1)/(sqrt(2x^2+x-3))dx=?

int(1)/(sqrt2+x-3x)dx