Home
Class 12
MATHS
int(cosx)/((1-sinx)^(3)(2+sinx))dx=...

`int(cosx)/((1-sinx)^(3)(2+sinx))dx=`

A

`-(1)/(27)log |1-sinx|-(1)/(9(1-sinx))+(1)/(6(1-sinx)^(2))-(1)/(27)log|2+sinx|+c`

B

`(1)/(27)log|1+sinx|-(1)/(9(1+sinx))-(1)/(6(1-sinx)^(2))+(1)/(27)log|2+sinx|+c`

C

`-(1)/(27)log|1+sinx|-(1)/(9(1-sinx))-(1)/(6(1-sinx)^(2))+(1)/(27)log|2+sinx|+c`

D

`-(1)/(27)log|1-sinx|+(1)/(9(1-sinx))+(1)/(6(1-sinx)^(2))+(1)/(27)log|2+sinx|+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{\cos x}{(1 - \sin x)^3 (2 + \sin x)} \, dx, \] we will follow these steps: ### Step 1: Substitution Let \( \sin x = t \). Then, we differentiate to find \( \cos x \, dx = dt \). Thus, we can rewrite the integral as: \[ \int \frac{dt}{(1 - t)^3 (2 + t)}. \] ### Step 2: Partial Fraction Decomposition We need to express the integrand using partial fractions: \[ \frac{1}{(1 - t)^3 (2 + t)} = \frac{A}{1 - t} + \frac{B}{(1 - t)^2} + \frac{C}{(1 - t)^3} + \frac{D}{2 + t}. \] Multiplying through by the denominator \( (1 - t)^3 (2 + t) \) gives: \[ 1 = A(1 - t)^2(2 + t) + B(1 - t)(2 + t) + C(2 + t) + D(1 - t)^3. \] ### Step 3: Finding Coefficients To find the coefficients \( A, B, C, D \), we can substitute convenient values for \( t \): 1. **Let \( t = 1 \)**: \[ 1 = D(1 - 1)^3 \Rightarrow D = 0. \] 2. **Let \( t = -2 \)**: \[ 1 = C(2 - 2) \Rightarrow C = \frac{1}{3}. \] 3. **Let \( t = 0 \)**: \[ 1 = A(1)(2) + B(1)(2) + C(2) \Rightarrow 2A + 2B + \frac{2}{3} = 1. \] 4. **Let \( t = -1 \)**: \[ 1 = A(4) + B(0) + C(1) + D(8) \Rightarrow 4A + \frac{1}{3} = 1. \] Solving these equations will yield the values of \( A, B, C \). ### Step 4: Integrating Each Term After finding the coefficients, we can integrate each term separately: \[ \int \left( \frac{A}{1 - t} + \frac{B}{(1 - t)^2} + \frac{C}{(1 - t)^3} + \frac{D}{2 + t} \right) dt. \] ### Step 5: Back Substitution After integrating, we will substitute back \( t = \sin x \) to express the result in terms of \( x \). ### Final Result The final result will be a combination of logarithmic and polynomial terms based on the integration results.
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE)|10 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|1 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos

Similar Questions

Explore conceptually related problems

int((2cosx-3sinx)/(3cosx+2sinx))dx

int((1+cosx))/((x+sinx)^(3))dx

int(2cosx-sinx)/(3+2sinx+cosx)dx

int(sinx-cosx)/(sqrt(1-sin2x))e^(sinx)cosx dx is equal to

If int(cosx-sinx)/(sqrt(8-sin2x))dx=sin^(-1)((sinx+cosx)/(a))+C then a =

int(cosx)/(sinx+cosx)dx=

int(cosx)/(3sin^2x-4sinx+1)dx=

int(dx)/((sinx+cosx)(2cosx+sinx))=

int(dx)/((sinx-2cosx)(2sinx+cosx))