Home
Class 12
MATHS
If intsqrt((cos x-cos^(3)x)/(1-cos^(3)x)...

If `intsqrt((cos x-cos^(3)x)/(1-cos^(3)x))dx=f(x)+c`, then `f(x)=`

A

`(3)/(2)sin^(-1)(cos^(3//2)x)+c`

B

`(2)/(3)cos^(-1)(cos^(3//2)x)+c`

C

`-(2)/(3)sin^(-1)(cos^(3//2)x)+c`

D

`(2)/(3)sin^(-1)(cos^(3//2)x)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \sqrt{\frac{\cos x - \cos^3 x}{1 - \cos^3 x}} \, dx, \] we will follow these steps: ### Step 1: Simplify the Integrand First, we rewrite the integrand: \[ \sqrt{\frac{\cos x - \cos^3 x}{1 - \cos^3 x}} = \sqrt{\frac{\cos x(1 - \cos^2 x)}{1 - \cos^3 x}}. \] Using the identity \(1 - \cos^2 x = \sin^2 x\), we can rewrite this as: \[ \sqrt{\frac{\cos x \sin^2 x}{1 - \cos^3 x}}. \] ### Step 2: Rewrite the Denominator Next, we can factor the denominator \(1 - \cos^3 x\): \[ 1 - \cos^3 x = (1 - \cos x)(1 + \cos x + \cos^2 x). \] Thus, we can express the integrand as: \[ \sqrt{\frac{\cos x \sin^2 x}{(1 - \cos x)(1 + \cos x + \cos^2 x)}}. \] ### Step 3: Use a Substitution Let \(t = \cos^{3/2} x\). Then, we differentiate: \[ dt = \frac{3}{2} \cos^{1/2} x (-\sin x) \, dx \implies dx = -\frac{2}{3} \frac{dt}{\cos^{1/2} x \sin x}. \] Now, substituting into the integral: \[ \int \sqrt{\frac{t^2 - t^3}{1 - t^2}} \left(-\frac{2}{3} \frac{dt}{\cos^{1/2} x \sin x}\right). \] ### Step 4: Simplify the Integral Substituting the expressions for \(\cos^{3/2} x\) and \(\sin x\) in terms of \(t\), we can simplify the integral further. ### Step 5: Evaluate the Integral The integral can be evaluated as: \[ -\frac{2}{3} \int \frac{1}{\sqrt{1 - t^2}} \, dt. \] This integral is a standard form, which gives: \[ -\frac{2}{3} \sin^{-1}(t) + C. \] ### Step 6: Substitute Back Finally, substituting back \(t = \cos^{3/2} x\): \[ f(x) = -\frac{2}{3} \sin^{-1}(\cos^{3/2} x) + C. \] Thus, the final answer is: \[ f(x) = -\frac{2}{3} \sin^{-1}(\cos^{3/2} x). \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE)|10 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|1 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos

Similar Questions

Explore conceptually related problems

intsqrt((1+cos 3x)/(1-cos3x))dx=

intsqrt((1-cos2x)/(1+cos 2x))dx=

If : int(cos^(3)x)/(sin^(2)x+sinx)dx=log|f(x)|-f(x)+c, then : f(x)=

intsqrt(1+cos 2x) dx

intsqrt(1-cos 2x) dx

intsqrt(cos^3x/sin^11x)dx

intsqrt(1+cos5x)dx=

intsqrt (1+cos2x)dx

if int e^(sin x)(x cos^(3)x-sin x)/(cos^(2)x)dx and f(0)=1 then f(pi)= is

If int(x+sin x)/(1+cos x)dx=f(x)tan g(x)+C , then, f(x)=