Home
Class 12
MATHS
If intcos x log (tan""(x)/(2))dx=sin x l...

If `intcos x log (tan""(x)/(2))dx=sin x log (tan""(x)/(2))+f(x)` then f(x) is equal to, (assuming c is an arbitrary real constant)

A

c

B

`c-x`

C

`c+x`

D

`2x+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \cos x \log \left( \frac{\tan x}{2} \right) dx \) and find \( f(x) \) in the equation \[ \int \cos x \log \left( \frac{\tan x}{2} \right) dx = \sin x \log \left( \frac{\tan x}{2} \right) + f(x), \] we will use integration by parts. ### Step 1: Identify \( u \) and \( dv \) Let: - \( u = \log \left( \frac{\tan x}{2} \right) \) - \( dv = \cos x \, dx \) ### Step 2: Differentiate \( u \) and integrate \( dv \) Now, we need to find \( du \) and \( v \): - Differentiate \( u \): \[ du = \frac{1}{\frac{\tan x}{2}} \cdot \frac{1}{2} \sec^2 x \, dx = \frac{1}{2 \tan x} \sec^2 x \, dx \] - Integrate \( dv \): \[ v = \int \cos x \, dx = \sin x \] ### Step 3: Apply integration by parts Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int \cos x \log \left( \frac{\tan x}{2} \right) dx = \sin x \log \left( \frac{\tan x}{2} \right) - \int \sin x \cdot \frac{1}{2 \tan x} \sec^2 x \, dx \] ### Step 4: Simplify the integral The integral \( \int \sin x \cdot \frac{1}{2 \tan x} \sec^2 x \, dx \) can be simplified: \[ \frac{\sin x}{\tan x} = \cos x \] Thus, we have: \[ \int \sin x \cdot \frac{1}{2 \tan x} \sec^2 x \, dx = \frac{1}{2} \int \cos x \, dx = \frac{1}{2} \sin x \] ### Step 5: Substitute back into the equation Now substituting back, we have: \[ \int \cos x \log \left( \frac{\tan x}{2} \right) dx = \sin x \log \left( \frac{\tan x}{2} \right) - \frac{1}{2} \sin x + C \] ### Step 6: Identify \( f(x) \) From the original equation: \[ \int \cos x \log \left( \frac{\tan x}{2} \right) dx = \sin x \log \left( \frac{\tan x}{2} \right) + f(x) \] we can see that: \[ f(x) = -\frac{1}{2} \sin x + C \] ### Final Answer Thus, \( f(x) \) is equal to: \[ f(x) = -\frac{1}{2} \sin x + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|1 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos

Similar Questions

Explore conceptually related problems

If f(x)=log|2x|,x!=0 then f'(x) is equal to

int(log(1+cos x)-x tan((x)/(2)))dx

If f(x)=log|2x|,xne0 then f'(x) is equal to

If y=e^(tan x(ln sin x)) then (dy)/(dx) is equal to

If int(f(x))/(log(sinx))dx=log[log sinx]+c , then f(x) is equal to

If intf(x)/(logcosx)dx=-log(logcosx)+c , then f(x) is equal to

If int(dx)/(f(x)) = log {f(x)}^(2) + c , then what is f(x) equal to ?

int(log(tan x))/(sin x cos x)dx=