Home
Class 12
MATHS
If int2^(2^(x)).2^(x)dx=A.2^(2^(x))+c, t...

If `int2^(2^(x)).2^(x)dx=A.2^(2^(x))+c`, then A =

A

`(1)/(log2)`

B

`log2`

C

`(log2)^(2)`

D

`(1)/((log2)^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int 2^{2^x} \cdot 2^x \, dx \) and find the constant \( A \) such that \[ \int 2^{2^x} \cdot 2^x \, dx = A \cdot 2^{2^x} + c, \] we will follow these steps: ### Step 1: Simplify the Integral First, we can rewrite the integral: \[ \int 2^{2^x} \cdot 2^x \, dx = \int 2^{2^x + x} \, dx. \] ### Step 2: Use Substitution Let \( t = 2^x \). Then, we differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = 2^x \ln(2) \implies dx = \frac{dt}{2^x \ln(2)} = \frac{dt}{t \ln(2)}. \] ### Step 3: Substitute in the Integral Now, substitute \( t \) and \( dx \) into the integral: \[ \int 2^{2^x + x} \, dx = \int 2^{t + \log_2(t)} \cdot \frac{dt}{t \ln(2)}. \] Since \( 2^{\log_2(t)} = t \), we can simplify: \[ 2^{t + \log_2(t)} = 2^t \cdot t. \] Thus, the integral becomes: \[ \int \frac{2^t \cdot t}{t \ln(2)} \, dt = \frac{1}{\ln(2)} \int 2^t \, dt. \] ### Step 4: Integrate \( 2^t \) The integral of \( 2^t \) is: \[ \int 2^t \, dt = \frac{2^t}{\ln(2)} + C. \] ### Step 5: Substitute Back Now, substituting back for \( t \): \[ \int 2^{2^x} \cdot 2^x \, dx = \frac{1}{\ln(2)} \cdot \left( \frac{2^t}{\ln(2)} + C \right) = \frac{2^{2^x}}{(\ln(2))^2} + C. \] ### Step 6: Compare with Given Expression We have: \[ \int 2^{2^x} \cdot 2^x \, dx = \frac{2^{2^x}}{(\ln(2))^2} + C. \] From the problem statement, we know: \[ A \cdot 2^{2^x} + c. \] By comparing the coefficients, we find: \[ A = \frac{1}{(\ln(2))^2}. \] ### Step 7: Final Answer Thus, the value of \( A \) is: \[ A = \frac{1}{(\ln(2))^2}. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|1 Videos
  • INDEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • DIFFERENTIAL EQUATIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions|19 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos

Similar Questions

Explore conceptually related problems

int2^(3x).3^(x)dx=

int2^(x)dx

int2^(x)*e^(x)dx

int2^(x)*e^(x)dx

int2^(x).3^(x+1).4^(x+2)dx=

int2^(-x)tan h2^(1-x)dx=

int2^(3x)*3^(2x)*5^(x)*dx=

int2/((1-x)(1+x^2))dx

The integral I=int2^((2^(x)+x))dx=lambda. (2^(2^(x)))+C (where, C is the constant of integration). Then the value of sqrtlambda is equal to