Home
Class 12
MATHS
The value of the integral int(0)^(pi//2)...

The value of the integral `int_(0)^(pi//2)(1)/(1+(tanx)^(101))dx` is equal to

A

1

B

`(pi)/(6)`

C

`(pi)/(8)`

D

`(pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \tan^{101} x} \, dx \), we can use a property of definite integrals. ### Step-by-Step Solution: 1. **Set up the integral**: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \tan^{101} x} \, dx \] 2. **Use the substitution**: We can use the substitution \( x = \frac{\pi}{2} - t \). Then, \( dx = -dt \). When \( x = 0 \), \( t = \frac{\pi}{2} \) and when \( x = \frac{\pi}{2} \), \( t = 0 \). Thus, the limits of integration will change accordingly: \[ I = \int_{\frac{\pi}{2}}^{0} \frac{1}{1 + \tan^{101} \left( \frac{\pi}{2} - t \right)} (-dt) = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \cot^{101} t} \, dt \] 3. **Simplify the integrand**: Recall that \( \cot x = \frac{1}{\tan x} \), so: \[ \cot^{101} t = \frac{1}{\tan^{101} t} \] Therefore, we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \frac{1}{\tan^{101} t}} \, dt = \int_{0}^{\frac{\pi}{2}} \frac{\tan^{101} t}{\tan^{101} t + 1} \, dt \] 4. **Combine the two expressions for \( I \)**: Now we have two expressions for \( I \): \[ I = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \tan^{101} x} \, dx \quad \text{and} \quad I = \int_{0}^{\frac{\pi}{2}} \frac{\tan^{101} x}{\tan^{101} x + 1} \, dx \] 5. **Add the two integrals**: Adding these two expressions gives: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{1}{1 + \tan^{101} x} + \frac{\tan^{101} x}{\tan^{101} x + 1} \right) dx \] 6. **Simplify the integrand**: Notice that: \[ \frac{1}{1 + \tan^{101} x} + \frac{\tan^{101} x}{\tan^{101} x + 1} = \frac{1 + \tan^{101} x}{1 + \tan^{101} x} = 1 \] Therefore: \[ 2I = \int_{0}^{\frac{\pi}{2}} 1 \, dx = \left[ x \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} \] 7. **Solve for \( I \)**: Dividing both sides by 2 gives: \[ I = \frac{\pi}{4} \] ### Final Answer: Thus, the value of the integral is: \[ \boxed{\frac{\pi}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|30 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|5 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos

Similar Questions

Explore conceptually related problems

By Simpson rule taking n=4, the value of the integral int _(0)^(1)(1)/(1+x^(2))dx is equal to

Statement I: The value of the integral int_(pi//6)^(pi//3) (dx)/(1+sqrt(tanx)) is equal to (pi)/6 . Statement II: int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx

The value of the integral int_(0)^(pi//2)log |tanx| dx is

int_(0)^(pi//2)(dx)/(1+tanx) is

The value of the integral I=int_(0)^(pi)(x)/(1+tan^(6)x)dx, (x not equal to (pi)/(2) ) is equal to

The value of the integral int_(0)^(2)|x^(2)-1|dx is

int_(0)^(pi//2)(1)/((1+tanx))dx=?

int_(0)^(pi//2) (dx)/(1+root(3)(tanx)) is equal to

The value of the integral int_(0)^(pi)(1-|sin 8x|)dx is