Home
Class 12
MATHS
int(1)^(3)f(x)dx, equals where f(x)={{:(...

`int_(1)^(3)f(x)dx`, equals where `f(x)={{:(2x+1","," when "1lexle2),(x^(2)+1","," when "2ltxle3):}`

A

`(34)/(3)`

B

`(23)/(3)`

C

`(33)/(4)`

D

`(43)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{1}^{3} f(x) \, dx \), where the function \( f(x) \) is defined piecewise as: \[ f(x) = \begin{cases} 2x + 1 & \text{for } 1 \leq x \leq 2 \\ x^2 + 1 & \text{for } 2 < x \leq 3 \end{cases} \] we can break the integral into two parts based on the definition of \( f(x) \). ### Step 1: Break the Integral We can split the integral at the point where the definition of \( f(x) \) changes, which is at \( x = 2 \): \[ \int_{1}^{3} f(x) \, dx = \int_{1}^{2} f(x) \, dx + \int_{2}^{3} f(x) \, dx \] ### Step 2: Substitute the Function Now we substitute the appropriate expressions for \( f(x) \) in each interval: 1. For \( 1 \leq x \leq 2 \), \( f(x) = 2x + 1 \). 2. For \( 2 < x \leq 3 \), \( f(x) = x^2 + 1 \). Thus, we have: \[ \int_{1}^{3} f(x) \, dx = \int_{1}^{2} (2x + 1) \, dx + \int_{2}^{3} (x^2 + 1) \, dx \] ### Step 3: Calculate Each Integral Now we calculate each integral separately. **Integral from 1 to 2:** \[ \int_{1}^{2} (2x + 1) \, dx \] Calculating this integral: \[ = \left[ x^2 + x \right]_{1}^{2} \] Calculating the limits: \[ = \left[ (2^2 + 2) - (1^2 + 1) \right] = \left[ 4 + 2 - (1 + 1) \right] = 6 - 2 = 4 \] **Integral from 2 to 3:** \[ \int_{2}^{3} (x^2 + 1) \, dx \] Calculating this integral: \[ = \left[ \frac{x^3}{3} + x \right]_{2}^{3} \] Calculating the limits: \[ = \left[ \left( \frac{3^3}{3} + 3 \right) - \left( \frac{2^3}{3} + 2 \right) \right] = \left[ \left( \frac{27}{3} + 3 \right) - \left( \frac{8}{3} + 2 \right) \right] \] Simplifying: \[ = \left[ 9 + 3 - \left( \frac{8}{3} + 2 \right) \right] = \left[ 12 - \left( \frac{8}{3} + \frac{6}{3} \right) \right] = 12 - \frac{14}{3} \] Finding a common denominator: \[ = \frac{36}{3} - \frac{14}{3} = \frac{22}{3} \] ### Step 4: Combine the Results Now we combine the results of both integrals: \[ \int_{1}^{3} f(x) \, dx = 4 + \frac{22}{3} \] Converting 4 to a fraction: \[ = \frac{12}{3} + \frac{22}{3} = \frac{34}{3} \] ### Final Answer Thus, the value of the integral \( \int_{1}^{3} f(x) \, dx \) is: \[ \boxed{\frac{34}{3}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|30 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|5 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(3)f(x)dx, where f(x)=|x|+|x-1|+|x-2|

If f(x)={{:(3x^(2)+12x-1",",-1lexle2),(37-x",",2ltxle3):} , Then

int_(0)^(2)f(x)dx where f(x)={2x+1;0<=x<1,3x^(2);1<=x<=2

Let f(x)={{:(3^x","-1lexle1),(4-x","1ltxle4):} then

If f(x)={{:(2x^(2)+1",",xle1),(4x^(3)-1",",xgt1):} , then int_(0)^(2)f(x)dx is

int_(-1)^(2)f(x)dx " where " f(x) = |x+1| +|x|+ |x-1| is equal to

Evaluate: int_-2^2 f(x) dx where f(x)={:{(2x-1,-2 le x le1),(3x-2,1lex le2):}

Let f(x)={{:(2x+1,"when"1 le x le 2),(x^(2)+1,"when"2 le x le 3):} . Show that int_(1)^(3)f(x)dx=(34)/(3) .

Verify Rolle's Theorem for the function : f(x)={{:(-4x+5", "0lexle1),(2x-3" , "1ltxle2):}