Home
Class 12
MATHS
int(0)^(1)(dx)/((x-a)(x-b))=...

`int_(0)^(1)(dx)/((x-a)(x-b))=`

A

`(1)/(a-b)log((b-ab)/(a-ab))`

B

`log((a-ab)/(b-ab))`

C

`(1)/(2ab)log((a+ab)/(b+ab))`

D

`(1)/(ab)tan^(-1)((a-ab)/(b-ab))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{1} \frac{dx}{(x-a)(x-b)} \] we will follow these steps: ### Step 1: Rewrite the integrand We start by rewriting the integrand in a more manageable form. We can express the function as: \[ \frac{1}{(x-a)(x-b)} = \frac{A}{x-a} + \frac{B}{x-b} \] where \(A\) and \(B\) are constants that we will determine.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|16 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|30 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|5 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) x dx

int_(0)^(1)(x)/(x+1)dx=

int_(0)^(1) (dx)/(e^(x) +e^(-x)) dx is equal to

Evaluate : (i) int_(0)^(1//2)(dx)/(sqrt(1-x)) (ii) int_(0)^(1)((1-x)/(1+x))dx

int_(0)^(1)x e^(x)dx=

int_(0)^(oo)(x)/((1+x)(1+x^(2)))dx

If int_(0)^(1)(dx)/((1+x)sqrt(1-x^(2)))=(a)/(b) , then

If int_(0)^(b)(dx)/(1+x^(2))=int_(b)^( oo)(dx)/(1+x^(2)) , then b=

int_(0)^(1)(dx)/([ax+(1-x)b]^(2))=

Show that :int_(0)^(1)(log x)/((1+x))dx=-int_(0)^(1)(log(1+x))/(x)dx