Home
Class 12
MATHS
The value of int(0)^(15)[x]^(3)dx equals...

The value of `int_(0)^(15)[x]^(3)dx` equals, where `[. ]` denote the greatest integer function

A

11005

B

11025

C

15625

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{15} [x]^3 \, dx \), where \([x]\) denotes the greatest integer function (GIF), we can break the integral into segments based on the intervals defined by the integers from 0 to 15. ### Step-by-Step Solution: 1. **Identify the intervals**: The greatest integer function \([x]\) changes its value at each integer. Therefore, we will break the integral from 0 to 15 into intervals: \[ \int_{0}^{15} [x]^3 \, dx = \int_{0}^{1} [x]^3 \, dx + \int_{1}^{2} [x]^3 \, dx + \int_{2}^{3} [x]^3 \, dx + \ldots + \int_{14}^{15} [x]^3 \, dx \] 2. **Evaluate each interval**: - For \(x \in [0, 1)\), \([x] = 0\): \[ \int_{0}^{1} [x]^3 \, dx = \int_{0}^{1} 0^3 \, dx = 0 \] - For \(x \in [1, 2)\), \([x] = 1\): \[ \int_{1}^{2} [x]^3 \, dx = \int_{1}^{2} 1^3 \, dx = \int_{1}^{2} 1 \, dx = 1 \] - For \(x \in [2, 3)\), \([x] = 2\): \[ \int_{2}^{3} [x]^3 \, dx = \int_{2}^{3} 2^3 \, dx = \int_{2}^{3} 8 \, dx = 8 \] - For \(x \in [3, 4)\), \([x] = 3\): \[ \int_{3}^{4} [x]^3 \, dx = \int_{3}^{4} 3^3 \, dx = \int_{3}^{4} 27 \, dx = 27 \] - For \(x \in [4, 5)\), \([x] = 4\): \[ \int_{4}^{5} [x]^3 \, dx = \int_{4}^{5} 4^3 \, dx = \int_{4}^{5} 64 \, dx = 64 \] - For \(x \in [5, 6)\), \([x] = 5\): \[ \int_{5}^{6} [x]^3 \, dx = \int_{5}^{6} 5^3 \, dx = \int_{5}^{6} 125 \, dx = 125 \] - For \(x \in [6, 7)\), \([x] = 6\): \[ \int_{6}^{7} [x]^3 \, dx = \int_{6}^{7} 6^3 \, dx = \int_{6}^{7} 216 \, dx = 216 \] - For \(x \in [7, 8)\), \([x] = 7\): \[ \int_{7}^{8} [x]^3 \, dx = \int_{7}^{8} 7^3 \, dx = \int_{7}^{8} 343 \, dx = 343 \] - For \(x \in [8, 9)\), \([x] = 8\): \[ \int_{8}^{9} [x]^3 \, dx = \int_{8}^{9} 8^3 \, dx = \int_{8}^{9} 512 \, dx = 512 \] - For \(x \in [9, 10)\), \([x] = 9\): \[ \int_{9}^{10} [x]^3 \, dx = \int_{9}^{10} 9^3 \, dx = \int_{9}^{10} 729 \, dx = 729 \] - For \(x \in [10, 11)\), \([x] = 10\): \[ \int_{10}^{11} [x]^3 \, dx = \int_{10}^{11} 10^3 \, dx = \int_{10}^{11} 1000 \, dx = 1000 \] - For \(x \in [11, 12)\), \([x] = 11\): \[ \int_{11}^{12} [x]^3 \, dx = \int_{11}^{12} 11^3 \, dx = \int_{11}^{12} 1331 \, dx = 1331 \] - For \(x \in [12, 13)\), \([x] = 12\): \[ \int_{12}^{13} [x]^3 \, dx = \int_{12}^{13} 12^3 \, dx = \int_{12}^{13} 1728 \, dx = 1728 \] - For \(x \in [13, 14)\), \([x] = 13\): \[ \int_{13}^{14} [x]^3 \, dx = \int_{13}^{14} 13^3 \, dx = \int_{13}^{14} 2197 \, dx = 2197 \] - For \(x \in [14, 15)\), \([x] = 14\): \[ \int_{14}^{15} [x]^3 \, dx = \int_{14}^{15} 14^3 \, dx = \int_{14}^{15} 2744 \, dx = 2744 \] 3. **Combine all the results**: \[ \int_{0}^{15} [x]^3 \, dx = 0 + 1 + 8 + 27 + 64 + 125 + 216 + 343 + 512 + 729 + 1000 + 1331 + 1728 + 2197 + 2744 \] 4. **Calculate the total**: \[ = 0 + 1 + 8 + 27 + 64 + 125 + 216 + 343 + 512 + 729 + 1000 + 1331 + 1728 + 2197 + 2744 = 11025 \] Thus, the value of \( \int_{0}^{15} [x]^3 \, dx \) is \( 11025 \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|30 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|5 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(11)[x]^(3)dx, where [.] denotes the greatest integer function,is (i)0(ii)14400 (iii)2200(iv) 3025

The value of int_(0)^(2017)sin(x-[x])dx : (where [ . ] denotes the greatest integer function) is equal to

The value of int_(0)^(2)[x^(2)-1]dx , where [x] denotes the greatest integer function, is given by:

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

The value of int_(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greatest integer functionof x) is equal to

The value of I = int_(-1)^(1)[x sin(pix)]dx is (where [.] denotes the greatest integer function)

The value of int_(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greatest integer function of x) is equal to S

The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

The value of int_(0)^(2pi)[sin 2x(1+cos 3x)]dx , where [t] denotes the greatest integer function, is: