Home
Class 12
MATHS
If f(x)=p(x)q(x), where p(x)=sqrt(cosx),...

If `f(x)=p(x)q(x),` where `p(x)=sqrt(cosx),q(x)=log(((1-x))/(1+x))`, then `int_(a)^(b)f(x)dx` equals, where `a=-1//2,b=1//2`

A

`2int_(0)^(1//2)p(x)q(x)dx`

B

`int_(0)^(b)p(x)q(x)`

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-1/2}^{1/2} f(x) \, dx \) where \( f(x) = p(x) q(x) \), \( p(x) = \sqrt{\cos x} \) and \( q(x) = \log\left(\frac{1-x}{1+x}\right) \), we can follow these steps: ### Step 1: Analyze the Function We start with the function: \[ f(x) = \sqrt{\cos x} \cdot \log\left(\frac{1-x}{1+x}\right) \] ### Step 2: Check for Symmetry We will check if \( f(x) \) is an odd function. An odd function satisfies the property \( f(-x) = -f(x) \). Calculating \( f(-x) \): \[ f(-x) = \sqrt{\cos(-x)} \cdot \log\left(\frac{1+x}{1-x}\right) \] Since \( \cos(-x) = \cos x \), we have: \[ f(-x) = \sqrt{\cos x} \cdot \log\left(\frac{1+x}{1-x}\right) \] ### Step 3: Simplify \( f(-x) \) Using the property of logarithms: \[ \log\left(\frac{1+x}{1-x}\right) = -\log\left(\frac{1-x}{1+x}\right) \] Thus, \[ f(-x) = \sqrt{\cos x} \cdot \left(-\log\left(\frac{1-x}{1+x}\right)\right) = -f(x) \] ### Step 4: Conclude that \( f(x) \) is Odd Since \( f(-x) = -f(x) \), we conclude that \( f(x) \) is an odd function. ### Step 5: Evaluate the Integral The integral of an odd function over a symmetric interval around zero is zero: \[ \int_{-a}^{a} f(x) \, dx = 0 \] In our case, \( a = \frac{1}{2} \): \[ \int_{-1/2}^{1/2} f(x) \, dx = 0 \] ### Final Answer Thus, the value of the integral is: \[ \int_{-1/2}^{1/2} f(x) \, dx = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|30 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|5 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(x)/(1+(In x)(ln x)...oo)AA x in[1,oo) then int_(1)^(2e)f(x)dx equals:

int_(0)^(3)f(x)dx, where f(x)=|x|+|x-1|+|x-2|

If 2f(x) - 3 f(1//x) = x," then " int_(1)^(2) f(x) dx is equal to

If f(x)=[(sinx,cosecx,tanx),(secx,xsinx,xtanx),(x^2-1,cosx,x^2+1)] then int_(-a) ^ a f(x) dx equals

Let F(x)=f(x)+f((1)/(x)), where f(x)=int_(t)^(x)(log t)/(1+t)dt (1) (1)/(2)(2)0(3)1(4)2

If f(x) = ln (x - sqrt(1 + x^(2))) , then what is int f''(x) dx equal to ?

Evaluate int_1^4 f(x)dx , where f(x)=|x-1|+|x-2|+|x-3|

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

int(x+1)/(x(1+xe^(x))^(2))dx=log|1-f(x)|+f(x)+c, then f(x)=

Let f(x)=log_(2)(x+sqrt(x^(2)+1)). If f(a)=b, then f(-a) is equal to