Home
Class 12
MATHS
If I(1)=int(0)^(pi//4)(tanx)^(cosx)dx, I...

If `I_(1)=int_(0)^(pi//4)(tanx)^(cosx)dx, I_(2)=int_(0)^(pi//4)(cotx)^(tanx)dx`
`I_(3)=int_(0)^(pi//4)(tanx)^(tanx)dx, I_(4)=int_(0)^(pi//4)(cotx)^(cotx)dx` then

A

`I_(1) lt I_(3)`

B

`I_(2) lt I_(4)`

C

`I_(1) lt I_(4)`

D

`I_(3) lt I_(2)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|30 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|5 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(tanx)/((1+tanx))dx=?

int_(0)^(pi//4)(e^(tanx))/(cos^(2)x)dx=?

int_0^(pi//2)log(tanx)dx

int_(0)^(pi)(dx)/((5+4cosx))

int_(0)^(pi//2)(dx)/(1+tanx) is

int_(0)^(pi//2) log (cotx ) dx=

Let I_(1)=int_(0)^(pi//4)e^(x^(2))dx, I_(2) = int_(0)^(pi//4) e^(x)dx, I_(3) = int_(0)^(pi//4)e^(x^(2)).sin x dx , then :

int_(0)^(pi)(x tanx)/(secx+cosx)dx is

int_(0)^(pi//2)(1)/((1+tanx))dx=?

int_0^pi (xtanx)/(secx+tanx)dx