Home
Class 12
MATHS
int(-1)^(1)(x-[x])dx is not equivalent t...

`int_(-1)^(1)(x-[x])dx` is not equivalent to

A

`int_(-1)^(1){x}dx`

B

`int_(0)^(2){x}dx`

C

`int_(-1)^(1)[x]dx`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-1}^{1} (x - [x]) \, dx \), where \([x]\) denotes the greatest integer function (or floor function), we can follow these steps: ### Step 1: Understand the expression \( x - [x] \) The expression \( x - [x] \) represents the fractional part of \( x \), denoted as \( \{x\} \). Thus, we can rewrite the integral as: \[ \int_{-1}^{1} (x - [x]) \, dx = \int_{-1}^{1} \{x\} \, dx \] ### Step 2: Analyze the function \( \{x\} \) The function \( \{x\} \) is defined as: - For \( x \in [0, 1) \), \( \{x\} = x \) - For \( x \in [-1, 0) \), \( \{x\} = x + 1 \) ### Step 3: Split the integral We can split the integral into two parts: \[ \int_{-1}^{1} \{x\} \, dx = \int_{-1}^{0} \{x\} \, dx + \int_{0}^{1} \{x\} \, dx \] ### Step 4: Evaluate the integral from \(-1\) to \(0\) For \( x \in [-1, 0) \): \[ \{x\} = x + 1 \] Thus, \[ \int_{-1}^{0} \{x\} \, dx = \int_{-1}^{0} (x + 1) \, dx \] Calculating this gives: \[ = \int_{-1}^{0} x \, dx + \int_{-1}^{0} 1 \, dx \] Calculating each part: - \( \int_{-1}^{0} x \, dx = \left[ \frac{x^2}{2} \right]_{-1}^{0} = 0 - \frac{(-1)^2}{2} = -\frac{1}{2} \) - \( \int_{-1}^{0} 1 \, dx = [x]_{-1}^{0} = 0 - (-1) = 1 \) Thus, \[ \int_{-1}^{0} (x + 1) \, dx = -\frac{1}{2} + 1 = \frac{1}{2} \] ### Step 5: Evaluate the integral from \(0\) to \(1\) For \( x \in [0, 1) \): \[ \{x\} = x \] Thus, \[ \int_{0}^{1} \{x\} \, dx = \int_{0}^{1} x \, dx = \left[ \frac{x^2}{2} \right]_{0}^{1} = \frac{1^2}{2} - 0 = \frac{1}{2} \] ### Step 6: Combine the results Now, we combine the results from both intervals: \[ \int_{-1}^{1} \{x\} \, dx = \int_{-1}^{0} \{x\} \, dx + \int_{0}^{1} \{x\} \, dx = \frac{1}{2} + \frac{1}{2} = 1 \] ### Conclusion Thus, the value of the integral \( \int_{-1}^{1} (x - [x]) \, dx \) is \( 1 \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|30 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|5 Videos
  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|14 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos

Similar Questions

Explore conceptually related problems

int_(-1)^(1)(x+1)dx

int_(-1)^(1)[((x-[x))]dx is equal to

int_(-1)^(1)|x|e^(x)dx

int_(-1)^(1)|x|dx=?

int_(-1)^(1)|1-x|dx

int_(-1)^(1)x^(3)|x|dx

int_(-1)^(0)(1+x)/(1-x)dx

int_(-1)^(1)x|x|dx is equal to

int_(0)^(1)(x)/(x+1)dx=