Home
Class 12
MATHS
If varphi(t)={{:(1","," for "0letlt1),(0...

If `varphi(t)={{:(1","," for "0letlt1),(0",","otherwise"):}`, then `int_(-3000)^(3000)(sum_(r'=2014)^(2016)varphi(t-r')varphi(t-2016))dt=`

A

a real number

B

1

C

0

D

does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integral \[ \int_{-3000}^{3000} \left( \sum_{r' = 2014}^{2016} \varphi(t - r') \varphi(t - 2016) \right) dt, \] we start by analyzing the function \(\varphi(t)\): \[ \varphi(t) = \begin{cases} 1 & \text{for } 0 \leq t < 1 \\ 0 & \text{otherwise} \end{cases}. \] ### Step 1: Break the Integral into Parts We can break the integral into three parts based on the values of \(r'\): \[ \int_{-3000}^{3000} \left( \varphi(t - 2014) \varphi(t - 2016) + \varphi(t - 2015) \varphi(t - 2016) + \varphi(t - 2016) \varphi(t - 2016) \right) dt. \] ### Step 2: Analyze Each Component 1. **For \(r' = 2014\)**: \[ \int_{-3000}^{3000} \varphi(t - 2014) \varphi(t - 2016) dt. \] Here, \(\varphi(t - 2014) = 1\) when \(2014 \leq t < 2015\) and \(\varphi(t - 2016) = 1\) when \(2016 \leq t < 2017\). Since there is no overlap in these intervals, this integral evaluates to 0. 2. **For \(r' = 2015\)**: \[ \int_{-3000}^{3000} \varphi(t - 2015) \varphi(t - 2016) dt. \] Here, \(\varphi(t - 2015) = 1\) when \(2015 \leq t < 2016\) and \(\varphi(t - 2016) = 1\) when \(2016 \leq t < 2017\). Again, there is no overlap, so this integral also evaluates to 0. 3. **For \(r' = 2016\)**: \[ \int_{-3000}^{3000} \varphi(t - 2016) \varphi(t - 2016) dt. \] Here, \(\varphi(t - 2016) = 1\) when \(2016 \leq t < 2017\). Thus, this integral evaluates to: \[ \int_{2016}^{2017} 1 \, dt = 1. \] ### Step 3: Combine the Results Now, we combine the results from all three parts: \[ 0 + 0 + 1 = 1. \] ### Final Answer Thus, the value of the integral is \[ \int_{-3000}^{3000} \left( \sum_{r' = 2014}^{2016} \varphi(t - r') \varphi(t - 2016) \right) dt = 1. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|30 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos

Similar Questions

Explore conceptually related problems

2int_(0)^(t)(1-cos t)/(t)dt

Evaluate: int_(pi/4)^((3pi)/4) varphi/(1-sinvarphi)d varphi

int_(0)^(1)t^(2)sqrt(1-t)*dt

int_(0)^(1)t^(5)*sqrt(1-t^(2))*dt

I=int_(0)^(-1)(t ln t)/(sqrt(1-t^(2)))dt=

If int_(0)^(1)(e^(t))/(t+1)dt=a, then int_(b-1)^(b)(e^(-t))/(t-b-1)dt=

Find the value of ln(int_(0)^(1)e^(t^(2)+t)(2t^(2)+t+1)dt)

The function f(x)=int_(-2015)^(x)t(e^(t)-e^(2))(e^(t)-1)(t+2014)^(2015)(t-2015)^(2016)(t-2016)^(2017) dt has

Let f(t)=sqrt(1-sin t), then int_(0)^(2 pi)f(t)*dt-int_(0)^( pi)f(t).dt, is equal to

if int(e^(t)dt)/(1+t)=a then int e^(t)(dt)/((1+t)^(2))=