Home
Class 12
MATHS
Let I(n)=int(0)^(1)x^(n)tan^(-1)xdx. If ...

Let `I_(n)=int_(0)^(1)x^(n)tan^(-1)xdx.` If `a_(n)I_(n+2)+b_(n)I_(n)=c_(n)` for all `n ge 1`, then

A

`a_(1), a_(2), a_(3)` are in G.P

B

`b_(1), b_(2), b_(3)` are in A.P

C

`c_(1), c_(2), c_(3)` are in H.P

D

`a_(1), a_(2), a_(3)` are in A.P

Text Solution

Verified by Experts

The correct Answer is:
B, D
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|30 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos
  • DERIVATIVES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|22 Videos

Similar Questions

Explore conceptually related problems

let I_(n)=int_(0)^((pi)/(4))tan^(n)xdx,n>1

If I_(n)=int_(0)^(1)x^(n)e^(-x)dx for n in N, then I_(7)-I_(6)=

Let I_(n)=int_(0)^(pi//4)tan^(n)xdx,n in N , Then

Let I_(n)=int_(0)^(1)x^(n)sqrt(1-x^(2))dx. Then lim_(nrarroo)(I_(n))/(I_(n-2))=

Let I_(n) = int_(0)^(1)(1-x^(3))^(n)dx, (nin N) then

I_(n)=int sin^(n)xdx

If I_(n)=int_(0)^( pi/4)tan^(n)xdx, prove that I_(n)+I_(n-2)=(1)/(n+1)

If = int_(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I_(n)-nI_(n-1)=

If I_(n)=int_(0)^(1)x^(n)(tan^(-1)x)dx, then prove that(n+1)I_(n)+(n-1)I_(n-2)=-(1)/(n)+(pi)/(2)