Home
Class 12
MATHS
If A=[(1, 1),(1, 1)], then A^(100) is eq...

If `A=[(1, 1),(1, 1)]`, then `A^(100)` is equal to

A

`100A`

B

`2^(99)A`

C

`2^(100)A`

D

99A

Text Solution

AI Generated Solution

The correct Answer is:
To find \( A^{100} \) where \( A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \), we can follow these steps: ### Step 1: Calculate \( A^2 \) We start by calculating \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \] To perform the matrix multiplication, we calculate each element: - First row, first column: \( 1 \cdot 1 + 1 \cdot 1 = 1 + 1 = 2 \) - First row, second column: \( 1 \cdot 1 + 1 \cdot 1 = 1 + 1 = 2 \) - Second row, first column: \( 1 \cdot 1 + 1 \cdot 1 = 1 + 1 = 2 \) - Second row, second column: \( 1 \cdot 1 + 1 \cdot 1 = 1 + 1 = 2 \) Thus, we have: \[ A^2 = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \] ### Step 2: Calculate \( A^3 \) Next, we calculate \( A^3 \): \[ A^3 = A^2 \cdot A = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \] Calculating each element: - First row, first column: \( 2 \cdot 1 + 2 \cdot 1 = 2 + 2 = 4 \) - First row, second column: \( 2 \cdot 1 + 2 \cdot 1 = 2 + 2 = 4 \) - Second row, first column: \( 2 \cdot 1 + 2 \cdot 1 = 2 + 2 = 4 \) - Second row, second column: \( 2 \cdot 1 + 2 \cdot 1 = 2 + 2 = 4 \) Thus, we have: \[ A^3 = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix} \] ### Step 3: Identify the pattern From the calculations, we can see a pattern: - \( A^1 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \) - \( A^2 = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \) - \( A^3 = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix} \) We can observe that: \[ A^n = \begin{pmatrix} 2^{n-1} & 2^{n-1} \\ 2^{n-1} & 2^{n-1} \end{pmatrix} \] ### Step 4: Calculate \( A^{100} \) Using the pattern identified, we can calculate \( A^{100} \): \[ A^{100} = \begin{pmatrix} 2^{100-1} & 2^{100-1} \\ 2^{100-1} & 2^{100-1} \end{pmatrix} = \begin{pmatrix} 2^{99} & 2^{99} \\ 2^{99} & 2^{99} \end{pmatrix} \] ### Final Answer Thus, the final answer is: \[ A^{100} = \begin{pmatrix} 2^{99} & 2^{99} \\ 2^{99} & 2^{99} \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 2 : SINGLE OPTION CORRECT TYPE|15 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos
  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

If A=[[1,0(1)/(2),1]], then A^(100) is equal to

If A=[(1,0,0),(0,1,0),(1,b,-10] then A^2 is equal is (A) unit matrix (B) null matrix (C) A (D) -A

If A=[(1,0,0),(0,1,0),(a,b,-1)] then A^2 is equal to (A) null matrix (B) unit matrix (C) -A (D) A

If A=[(1,-1,0),(1,0,0),(0,0,-1)] , then A^(-1) is

If {:A=[(1,0,0),(0,1,0),(a,b,-1)]:} , then A^2 is equal to

If f(x)=|(x,1,1),(0, 1+x, 1),(-x^2, 1+x, 1+x)| , then 1/10^4 f(100) is equal to

If f(x)=|(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x(x-1))|, then f(100) is equal to - (i)0 (ii)1 (iii)100 (iv)-100