Home
Class 12
MATHS
If y=(1)/(1+x+x^(2)), then (dy)/(dx)=...

If `y=(1)/(1+x+x^(2))`, then `(dy)/(dx)=`

A

`y^(2)(1+2x)`

B

`(-(1+2x))/(y^(2))`

C

`-y^(2)(1+2x)`

D

`((1+2x)/(y^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \(\frac{dy}{dx}\) for the function \(y = \frac{1}{1 + x + x^2}\), we will use the quotient rule for differentiation. The quotient rule states that if we have a function in the form \(y = \frac{f(x)}{g(x)}\), then the derivative is given by: \[ \frac{dy}{dx} = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} \] ### Step-by-Step Solution: 1. **Identify \(f(x)\) and \(g(x)\)**: - Here, \(f(x) = 1\) and \(g(x) = 1 + x + x^2\). 2. **Compute \(f'(x)\) and \(g'(x)\)**: - \(f'(x) = 0\) (since the derivative of a constant is zero). - \(g'(x) = 0 + 1 + 2x = 1 + 2x\). 3. **Apply the quotient rule**: - Using the quotient rule, we have: \[ \frac{dy}{dx} = \frac{0 \cdot g(x) - 1 \cdot g'(x)}{(g(x))^2} \] - Substituting \(g(x)\) and \(g'(x)\): \[ \frac{dy}{dx} = \frac{0 - (1 + 2x)}{(1 + x + x^2)^2} \] 4. **Simplify the expression**: - This simplifies to: \[ \frac{dy}{dx} = \frac{-(1 + 2x)}{(1 + x + x^2)^2} \] - We can also express this in terms of \(y\): - Since \(y = \frac{1}{1 + x + x^2}\), we can write \(1 + x + x^2 = \frac{1}{y}\). - Therefore, \((1 + x + x^2)^2 = \frac{1}{y^2}\). 5. **Final expression**: - Substituting this back into our derivative: \[ \frac{dy}{dx} = -y^2(1 + 2x) \] ### Final Answer: \[ \frac{dy}{dx} = -y^2(1 + 2x) \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 2 : SINGLE OPTION CORRECT TYPE|15 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos
  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

If y=cot^(-1)(1+x^(2)-x), then (dy)/(dx)=

If y=((1-x)/(x))^(2)," then: "(dy)/(dx)=

If y=((x+1)/(x))^(x)," then "(dy)/(dx)=

1.If y =1+x+ x^(2) then (dy)/(dx)

If y = tan^(-1) ((1 + x^(2))/(1 - x^(2))) " then " (dy)/(dx) = ?

If y = sin^(-1) ((2x)/(1 + x^(2))), "then" (dy)/(dx) is equal to

If y=(1)/(sqrt(x^(2)-x+1)) , then (dy)/(dx)=

If y=log((1-x^(2))/(1+x^(2)))," then "(dy)/(dx)=

If y=cos ^(-1) ((1-x^(2))/( 1+x^(2))) ,then (dy)/(dx)=

If y=x+(1)/(x+y)," then: "(dy)/(dx)=