Home
Class 12
MATHS
If A[(1, 0, 0),(x, 1, 0),(x, x, 1)] and ...

If `A[(1, 0, 0),(x, 1, 0),(x, x, 1)] and I=[(1, 0, 0),(0,1,0),(0,0,1)]`, then `A^(3)-3A^(2)+3A` is equal to

A

3I

B

I

C

`-I`

D

`-2I`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( A^3 - 3A^2 + 3A \) where \( A = \begin{pmatrix} 1 & 0 & 0 \\ x & 1 & 0 \\ x & x & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate \( A - \lambda I \) We start by calculating \( A - \lambda I \), where \( I \) is the identity matrix: \[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Thus, \[ A - \lambda I = \begin{pmatrix} 1 - \lambda & 0 & 0 \\ x & 1 - \lambda & 0 \\ x & x & 1 - \lambda \end{pmatrix} \] ### Step 2: Calculate the determinant of \( A - \lambda I \) Next, we find the determinant of \( A - \lambda I \): \[ \text{det}(A - \lambda I) = (1 - \lambda) \begin{vmatrix} 1 - \lambda & 0 \\ x & 1 - \lambda \end{vmatrix} \] Calculating the 2x2 determinant: \[ = (1 - \lambda)((1 - \lambda)(1 - \lambda) - 0) = (1 - \lambda)^3 \] Thus, we have: \[ \text{det}(A - \lambda I) = (1 - \lambda)^3 \] ### Step 3: Set the characteristic polynomial to zero The characteristic polynomial is given by: \[ (1 - \lambda)^3 = 0 \] This implies that \( \lambda = 1 \) is a root of multiplicity 3. ### Step 4: Use the Cayley-Hamilton theorem According to the Cayley-Hamilton theorem, a matrix satisfies its own characteristic equation. Therefore, we can substitute \( A \) into the characteristic polynomial: \[ A^3 - 3A^2 + 3A - I = 0 \] Rearranging gives: \[ A^3 - 3A^2 + 3A = I \] ### Conclusion Thus, we conclude that: \[ A^3 - 3A^2 + 3A = I \] ### Final Answer The result is: \[ A^3 - 3A^2 + 3A = I \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 2 : SINGLE OPTION CORRECT TYPE|15 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos
  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

Let I=((1,0,0),(0,1,0),(0,0,1)) and P=((1,0,0),(0,-1,0),(0,0,-2)) . Then the matrix p^3+2P^2 is equal to

Let I = [{:(1, 0, 0),(0 ,1, 0),(0,0,1):}] and P = [{:(1, 0, 0),(0 ,-1, 0),(0,0,-2):}] . Then the matrix p^(3) + 2P^(2) is equal to

The inverse of [(1,a,b),(0,x,0),(0,0,1)] is [(1,-a,-b),(0,1,0),(0,0,1)] |then x =

If {:A=[(1,2,x),(0,1,0),(0,0,1)]andB=[(1,-2,y),(0,1,0),(0,0,1)]:} and AB=I_3 , then x + y equals

If A=|[1,0,1],[0,1,2],[0,0,4]| then |3A|

If A=|{:(1,0,0),(0,1,0),(0,0,1):}|" and A"=[{:(0,-3,4),(1,2,3),(0,5,5):}]," then find "(I-A)^(-1)

If A=((1,0,0),(0,2,1),(1,0,3)) then (A-I)(A-2I)(A-3I)=

If A = {:((1,-1),(1,2)):} and I={:((1,0),(0,1)):} then 3A^(-1) is equal to :