Home
Class 12
MATHS
If omega is an imaginary cube root of un...

If `omega` is an imaginary cube root of unity, then the value of `|(1,omega^(2),1-omega^(4)),(omega,1,1+omega^(5)),(1,omega,omega^(2))|` is

A

`-4`

B

`omega^(2)-4`

C

`omega^(2)`

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the determinant: \[ D = \begin{vmatrix} 1 & \omega^2 & 1 - \omega^4 \\ \omega & 1 & 1 + \omega^5 \\ 1 & \omega & \omega^2 \end{vmatrix} \] ### Step 1: Simplify the powers of \(\omega\) Given that \(\omega\) is a cube root of unity, we have the following properties: - \(\omega^3 = 1\) - \(1 + \omega + \omega^2 = 0\) Using these properties, we can simplify \(\omega^4\) and \(\omega^5\): - \(\omega^4 = \omega^3 \cdot \omega = 1 \cdot \omega = \omega\) - \(\omega^5 = \omega^3 \cdot \omega^2 = 1 \cdot \omega^2 = \omega^2\) Now we can rewrite the determinant with these simplifications: \[ D = \begin{vmatrix} 1 & \omega^2 & 1 - \omega \\ \omega & 1 & 1 + \omega^2 \\ 1 & \omega & \omega^2 \end{vmatrix} \] ### Step 2: Calculate the determinant We can now calculate the determinant \(D\) using cofactor expansion along the first row: \[ D = 1 \cdot \begin{vmatrix} 1 & 1 + \omega^2 \\ \omega & \omega^2 \end{vmatrix} - \omega^2 \cdot \begin{vmatrix} \omega & 1 + \omega^2 \\ 1 & \omega^2 \end{vmatrix} + (1 - \omega) \cdot \begin{vmatrix} \omega & 1 \\ 1 & \omega \end{vmatrix} \] ### Step 3: Evaluate the 2x2 determinants 1. **First determinant**: \[ \begin{vmatrix} 1 & 1 + \omega^2 \\ \omega & \omega^2 \end{vmatrix} = 1 \cdot \omega^2 - \omega \cdot (1 + \omega^2) = \omega^2 - \omega - \omega^3 = \omega^2 - \omega - 1 \] 2. **Second determinant**: \[ \begin{vmatrix} \omega & 1 + \omega^2 \\ 1 & \omega^2 \end{vmatrix} = \omega \cdot \omega^2 - 1 \cdot (1 + \omega^2) = \omega^3 - (1 + \omega^2) = 1 - 1 - \omega^2 = -\omega^2 \] 3. **Third determinant**: \[ \begin{vmatrix} \omega & 1 \\ 1 & \omega \end{vmatrix} = \omega^2 - 1 \] ### Step 4: Substitute back into the determinant \(D\) Now substituting back into the expression for \(D\): \[ D = 1 \cdot (\omega^2 - \omega - 1) - \omega^2 \cdot (-\omega^2) + (1 - \omega)(\omega^2 - 1) \] Expanding this: \[ D = \omega^2 - \omega - 1 + \omega^4 + (1 - \omega)(\omega^2 - 1) \] Since \(\omega^4 = \omega\): \[ D = \omega^2 - \omega - 1 + \omega + (1 - \omega)(\omega^2 - 1) \] ### Step 5: Simplify further Now we simplify \(D\): \[ D = \omega^2 - 1 + (1 - \omega)(\omega^2 - 1) \] Expanding \((1 - \omega)(\omega^2 - 1)\): \[ = \omega^2 - 1 - \omega^3 + \omega = \omega^2 - 1 - 1 + \omega = \omega^2 + \omega - 2 \] So we have: \[ D = \omega^2 - 1 + \omega^2 + \omega - 2 = 2\omega^2 + \omega - 3 \] ### Final Step: Evaluate \(D\) Using the property \(1 + \omega + \omega^2 = 0\) to substitute for \(\omega\): \[ D = 2\omega^2 + (-1 - \omega^2) - 3 = \omega^2 - 4 \] Thus, the final value of the determinant is: \[ \boxed{\omega^2 - 4} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 2 : SINGLE OPTION CORRECT TYPE|15 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos
  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

If omega is an imainary cube root of unity,then show that (1-omega)(1-omega^(2))(1-omega^(4))(1-omega^(5))=9

If omega is an imaginary cube root of unity,then find the value of (1+omega)(1+omega^(2))(1+omega^(3))(1+omega^(4))(1+omega^(5))......(1+omega^(3n))=

If omegais an imaginary cube root of unity, then the value of the determinant |(1+omega,omega^2,-omega),(1+omega^2,omega,-omega^2),(omega+omega^2,omega,-omega^2)|

If omega is an imaginary cube root of unity, then (1+omega-omega^(2))^(7) equals

If omega is a non-real cube root of unity,then the value of (1-omega+omega^(2))^(5)+(1+omega-omega^(2))^(5) is

If omega is an imaginary fifth root of unity,then find the value of log_(2)|1+omega+omega^(2)+omega^(3)-1/ omega|

If omega be an imaginary cube root of unity,show that (1+omega-omega^(2))(1-omega+omega^(2))=4