Home
Class 12
MATHS
If I(1)=int(0)^(pi//4)sin^(2)xdx and I(2...

If `I_(1)=int_(0)^(pi//4)sin^(2)xdx and I_(2)=int_(0)^(pi//4)cos^(2)xdx`, then

A

`I_(1)=I_(2)`

B

`I_(1) lt I_(2)`

C

`I_(1) gt I_(2)`

D

`I_(2)=I_(1)+pi//4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integrals \( I_1 = \int_0^{\frac{\pi}{4}} \sin^2 x \, dx \) and \( I_2 = \int_0^{\frac{\pi}{4}} \cos^2 x \, dx \), we can use the trigonometric identities and properties of definite integrals. ### Step 1: Calculate \( I_1 \) Using the identity \( \sin^2 x = \frac{1 - \cos(2x)}{2} \), we can rewrite \( I_1 \): \[ I_1 = \int_0^{\frac{\pi}{4}} \sin^2 x \, dx = \int_0^{\frac{\pi}{4}} \frac{1 - \cos(2x)}{2} \, dx \] ### Step 2: Split the Integral Now, we can split the integral: \[ I_1 = \frac{1}{2} \int_0^{\frac{\pi}{4}} 1 \, dx - \frac{1}{2} \int_0^{\frac{\pi}{4}} \cos(2x) \, dx \] ### Step 3: Evaluate the First Integral The first integral is straightforward: \[ \int_0^{\frac{\pi}{4}} 1 \, dx = \left[ x \right]_0^{\frac{\pi}{4}} = \frac{\pi}{4} \] ### Step 4: Evaluate the Second Integral For the second integral, we have: \[ \int_0^{\frac{\pi}{4}} \cos(2x) \, dx = \left[ \frac{\sin(2x)}{2} \right]_0^{\frac{\pi}{4}} = \frac{\sin\left(\frac{\pi}{2}\right)}{2} - \frac{\sin(0)}{2} = \frac{1}{2} - 0 = \frac{1}{2} \] ### Step 5: Combine Results for \( I_1 \) Now, substituting back into the expression for \( I_1 \): \[ I_1 = \frac{1}{2} \left( \frac{\pi}{4} \right) - \frac{1}{2} \left( \frac{1}{2} \right) = \frac{\pi}{8} - \frac{1}{4} \] ### Step 6: Calculate \( I_2 \) Using the identity \( \cos^2 x = \frac{1 + \cos(2x)}{2} \), we can rewrite \( I_2 \): \[ I_2 = \int_0^{\frac{\pi}{4}} \cos^2 x \, dx = \int_0^{\frac{\pi}{4}} \frac{1 + \cos(2x)}{2} \, dx \] ### Step 7: Split the Integral for \( I_2 \) Similar to \( I_1 \): \[ I_2 = \frac{1}{2} \int_0^{\frac{\pi}{4}} 1 \, dx + \frac{1}{2} \int_0^{\frac{\pi}{4}} \cos(2x) \, dx \] ### Step 8: Evaluate the Integrals for \( I_2 \) Using the results from \( I_1 \): \[ I_2 = \frac{1}{2} \left( \frac{\pi}{4} \right) + \frac{1}{2} \left( \frac{1}{2} \right) = \frac{\pi}{8} + \frac{1}{4} \] ### Step 9: Compare \( I_1 \) and \( I_2 \) Now we have: \[ I_1 = \frac{\pi}{8} - \frac{1}{4}, \quad I_2 = \frac{\pi}{8} + \frac{1}{4} \] ### Step 10: Conclusion Clearly, \( I_2 > I_1 \). ### Final Result Thus, we can conclude that \( I_2 \) is greater than \( I_1 \). ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 2 : SINGLE OPTION CORRECT TYPE|15 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos
  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi/4)sin^(4)xdx

int_(0)^(pi//2)sin^(2)xdx=?

int_(0)^( pi/4)sec^(2)xdx

int_(0)^( pi/2)cos^(6)xdx

int_(0)^( pi/2)cos^(3)xdx

int_(0)^( pi)sin^(2)xdx

"int_(0)^( pi)x sin^(2)xdx

"int_(0)^( pi/2)cos^(n)xdx

int_(0)^(2 pi)cos^(4)xdx

int_(0)^(2 pi)sin^(3)xdx