Home
Class 12
MATHS
If P=[(2, -2, -4),(-1, 3, 4),(1, -2, -3)...

If `P=[(2, -2, -4),(-1, 3, 4),(1, -2, -3)],` then `P^(5)` equals

A

P

B

2P

C

`-P`

D

`-2P`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( P^5 \) for the matrix \[ P = \begin{pmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{pmatrix} \] we will first calculate \( P^2 \), and then use the properties of matrix multiplication to find \( P^5 \). ### Step 1: Calculate \( P^2 \) To find \( P^2 \), we multiply \( P \) by itself: \[ P^2 = P \times P = \begin{pmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{pmatrix} \times \begin{pmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{pmatrix} \] Calculating each element of \( P^2 \): - First row, first column: \[ 2 \cdot 2 + (-2) \cdot (-1) + (-4) \cdot 1 = 4 + 2 - 4 = 2 \] - First row, second column: \[ 2 \cdot (-2) + (-2) \cdot 3 + (-4) \cdot (-2) = -4 - 6 + 8 = -2 \] - First row, third column: \[ 2 \cdot (-4) + (-2) \cdot 4 + (-4) \cdot (-3) = -8 - 8 + 12 = -4 \] - Second row, first column: \[ -1 \cdot 2 + 3 \cdot (-1) + 4 \cdot 1 = -2 - 3 + 4 = -1 \] - Second row, second column: \[ -1 \cdot (-2) + 3 \cdot 3 + 4 \cdot (-2) = 2 + 9 - 8 = 3 \] - Second row, third column: \[ -1 \cdot (-4) + 3 \cdot 4 + 4 \cdot (-3) = 4 + 12 - 12 = 4 \] - Third row, first column: \[ 1 \cdot 2 + (-2) \cdot (-1) + (-3) \cdot 1 = 2 + 2 - 3 = 1 \] - Third row, second column: \[ 1 \cdot (-2) + (-2) \cdot 3 + (-3) \cdot (-2) = -2 - 6 + 6 = -2 \] - Third row, third column: \[ 1 \cdot (-4) + (-2) \cdot 4 + (-3) \cdot (-3) = -4 - 8 + 9 = -3 \] Thus, we have: \[ P^2 = \begin{pmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{pmatrix} = P \] ### Step 2: Calculate \( P^3 \) Since \( P^2 = P \), we can find \( P^3 \): \[ P^3 = P^2 \times P = P \times P = P^2 = P \] ### Step 3: Calculate \( P^4 \) Similarly, we find \( P^4 \): \[ P^4 = P^3 \times P = P \times P = P^2 = P \] ### Step 4: Calculate \( P^5 \) Finally, we find \( P^5 \): \[ P^5 = P^4 \times P = P \times P = P^2 = P \] ### Conclusion Thus, we conclude that: \[ P^5 = P = \begin{pmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 2 : SINGLE OPTION CORRECT TYPE|15 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos
  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

" 1.If "P=[[2,-2,-4],[-1,3,4],[1,-2,-3]]" then show that,"P^(2)=P" ."

" .If "P=[[2,-2,-4],[-1,3,4],[1,-2,-3]]" then show that,"P^(2)=P

If |{:(2, -3), (p-4, 2p-1):}| = -6 , then p =____.

If P=[(lambda,0),(7,1)] and Q=[(4,0),(-7,1)] such that P^(2)=Q , then P^(3) is equal to

If P=[[1,42,3]], then P^(5)-4P^(4)-7P^(3)+11P^(2) is equal to (A)P+10I(B)P+5I(C)2P+15I(D)P=5I

If P(A) = (4)/(5), P(B) = (2)/(5), P(A nn B) = (1)/(2) then P(A uu B) is equal to .

If p(x)=ax^(2)+bx and q(x)=lx^(2)+mx+n with p(1)=q(1), p(2)-q(2)=1 , and p(3)-q(3)=4 , then p(4)-q(4) is equal to