Home
Class 12
MATHS
If alpha, beta, gamma are cube roots of ...

If `alpha, beta, gamma` are cube roots of unity, then the value of `|(e^(alpha),e^(2alpha),(e^(3alpha)-1)),(e^(beta),e^(2beta),(e^(3beta)-1)),(e^(gamma),e^(2gamma),(e^(3gamma)-1))|=`

A

`-2`

B

`-1`

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant: \[ D = \begin{vmatrix} e^{\alpha} & e^{2\alpha} & e^{3\alpha} - 1 \\ e^{\beta} & e^{2\beta} & e^{3\beta} - 1 \\ e^{\gamma} & e^{2\gamma} & e^{3\gamma} - 1 \end{vmatrix} \] where \(\alpha, \beta, \gamma\) are the cube roots of unity. ### Step 1: Properties of Cube Roots of Unity The cube roots of unity are given by: \[ \alpha = 1, \quad \beta = e^{2\pi i / 3}, \quad \gamma = e^{4\pi i / 3} \] These satisfy the properties: \[ \alpha + \beta + \gamma = 0 \quad \text{and} \quad \alpha \beta \gamma = 1 \] ### Step 2: Rewrite the Determinant We can rewrite the third column of the determinant: \[ e^{3\alpha} - 1 = e^{3\alpha} - e^0 = e^{3\alpha} - e^{0} \] This allows us to express the determinant as: \[ D = \begin{vmatrix} e^{\alpha} & e^{2\alpha} & e^{3\alpha} \\ e^{\beta} & e^{2\beta} & e^{3\beta} \\ e^{\gamma} & e^{2\gamma} & e^{3\gamma} \end{vmatrix} - \begin{vmatrix} e^{\alpha} & e^{2\alpha} & 1 \\ e^{\beta} & e^{2\beta} & 1 \\ e^{\gamma} & e^{2\gamma} & 1 \end{vmatrix} \] ### Step 3: Factor Out Common Terms Notice that \(e^{\alpha}, e^{\beta}, e^{\gamma}\) can be factored out from the first determinant: \[ D = e^{\alpha + \beta + \gamma} \begin{vmatrix} 1 & e^{\alpha} & e^{2\alpha} \\ 1 & e^{\beta} & e^{2\beta} \\ 1 & e^{\gamma} & e^{2\gamma} \end{vmatrix} - \begin{vmatrix} e^{\alpha} & e^{2\alpha} & 1 \\ e^{\beta} & e^{2\beta} & 1 \\ e^{\gamma} & e^{2\gamma} & 1 \end{vmatrix} \] ### Step 4: Evaluate the Determinants Since \(\alpha + \beta + \gamma = 0\), we have \(e^{\alpha + \beta + \gamma} = e^0 = 1\). Thus, we can simplify: \[ D = \begin{vmatrix} 1 & e^{\alpha} & e^{2\alpha} \\ 1 & e^{\beta} & e^{2\beta} \\ 1 & e^{\gamma} & e^{2\gamma} \end{vmatrix} - \begin{vmatrix} e^{\alpha} & e^{2\alpha} & 1 \\ e^{\beta} & e^{2\beta} & 1 \\ e^{\gamma} & e^{2\gamma} & 1 \end{vmatrix} \] ### Step 5: Recognize the Determinants are Equal The two determinants are equal due to the symmetry of the cube roots of unity. Therefore: \[ D = 0 \] ### Final Result Thus, the value of the determinant is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 2 : SINGLE OPTION CORRECT TYPE|15 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos
  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are the roots of the equation x^(3)+2x^(2)+3x+3=0, then the value of ((alpha)/(alpha+1))^(3)+((beta)/(beta+1))^(3)+((gamma)/(gamma+1))^(3) is

If (alpha, beta, gamma) are roots of equation x^(3)-3x^(2)+1=0 then the value of [((alpha)/(1+alpha))^(3)+((beta)/(1+beta))^(3)+((gamma)/(1+gamma))^(3) is k then |k|=

If alpha, beta, gamma are the cube roots of 8 , then |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)|=

If alpha,beta and gamma are roots of equation x^(3)-3x^(2)+1=0 , then the value of ((alpha)/(1+alpha))^(3)+((beta)/(1+beta))^(3)+((gamma)/(1+gamma))^(3) is __________.

If alpha + beta + gamma = pi , then the value of the determinant |(e^(2i alpha),e^(-i gamma),e^(-i beta)),(e^(-i gamma),e^(2i beta),e^(-i alpha)),(e^(-i beta),e^(-i alpha),e^(2i gamma))| , is

If alpha, beta, gamma are the roots of x^(3) + ax^(2) + b = 0 , then the value of |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| , is

If alpha, beta, gamma are roots of x^(3)-2x^(2)+7x-1=0 then the value of (alpha+beta-gamma) (beta+gamma-alpha) (alpha+gamma-beta)

.If alpha,beta,gamma are roots of x^(3)-x^(2)-1=0 then the value of ((1+alpha))/((1-alpha))+((1+beta))/((1-beta))+((1+gamma))/((1-gamma)) is equal to

If alpha,beta,gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 find the value of (beta+gamma)(gamma+alpha)(alpha+beta)

If alpha,beta and gamma are the roots of x^(3)-x^(2)-1=0, then value of (1+alpha)/(1-alpha)+(1+beta)/(1-beta)+(1+gamma)/(1-gamma) is