Home
Class 12
MATHS
If int(0)^(y)e^(-t^(2))dt+int(0)^(x^(2))...

If `int_(0)^(y)e^(-t^(2))dt+int_(0)^(x^(2))sin^(2)tdt=0`, then `(dy)/(dx)` at `x=y=1` is

A

`sin^(-1)`

B

`-esin^(2)1`

C

`-2esin^(2)1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the given equation with respect to \( x \) and then evaluate \( \frac{dy}{dx} \) at \( x = y = 1 \). ### Step-by-Step Solution 1. **Given Equation**: \[ \int_{0}^{y} e^{-t^2} dt + \int_{0}^{x^2} \sin^2 t \, dt = 0 \] 2. **Differentiate Both Sides with Respect to \( x \)**: Using Leibniz's rule for differentiation under the integral sign, we differentiate the left-hand side: \[ \frac{d}{dx} \left( \int_{0}^{y} e^{-t^2} dt \right) + \frac{d}{dx} \left( \int_{0}^{x^2} \sin^2 t \, dt \right) = 0 \] 3. **Applying Leibniz's Rule**: For the first integral: \[ \frac{d}{dx} \left( \int_{0}^{y} e^{-t^2} dt \right) = e^{-y^2} \frac{dy}{dx} \] For the second integral: \[ \frac{d}{dx} \left( \int_{0}^{x^2} \sin^2 t \, dt \right) = \sin^2(x^2) \cdot \frac{d}{dx}(x^2) = \sin^2(x^2) \cdot 2x \] 4. **Setting Up the Equation**: Combining both results, we have: \[ e^{-y^2} \frac{dy}{dx} + 2x \sin^2(x^2) = 0 \] 5. **Solving for \( \frac{dy}{dx} \)**: Rearranging the equation gives: \[ e^{-y^2} \frac{dy}{dx} = -2x \sin^2(x^2) \] Therefore, \[ \frac{dy}{dx} = -\frac{2x \sin^2(x^2)}{e^{-y^2}} = -2x \sin^2(x^2) e^{y^2} \] 6. **Evaluating at \( x = 1 \) and \( y = 1 \)**: Substitute \( x = 1 \) and \( y = 1 \): \[ \frac{dy}{dx} \bigg|_{x=1, y=1} = -2(1) \sin^2(1^2) e^{1^2} = -2 \sin^2(1) e \] ### Final Answer: \[ \frac{dy}{dx} \bigg|_{x=1, y=1} = -2 e \sin^2(1) \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos
  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(y)cos t^(2)dt=int_(0)^(x^(2))(sin t)/(t)dt, then (dy)/(dx) is

If (d)/(dx)(int_(0)^(y)e^(-t^(2))dt+int_(0)^(x^(2)) sin^(2) tdt)=0, "find" (dy)/(dx).

If int _(0) ^(y) cos t ^(2) dt= int _(0) ^(x ^(2)) (sint)/(t ) dt then (dy)/(dx) is equal to

Find the derivative (dy)/(dx) of the following implicit functions : (a) int_(0)^(y) e^(-t^(2)) dt + int_(0)^(x^(3)) sin ^(2) t dt = 0 (b) int_(0)^(y) e^(t) dt + int _(0)^(x) sin t dt = 0 (c) int _(pi//2)^(x) sqrt(3 - 2 sin^(2)z ) dz + int_(0)^(y) cos t dt = 0

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

If int_(y)^(y)cos t^(2)dt=int_(0)^(x^(2))(sin t)/(t)dx, the prove that (dy)/(dx)=(2sin x^(2))/(x cos y^(2))

If int_((pi)/(2))^(x)sqrt(3-2sin^(2))tdt+int_(0)^(y)cos tdt=0, then ((dy)/(dx))atx=pi and y=pi is

If x=int_(0)^(y)sqrt(1+t^(2))dt, find (dy)/(dx)

int_(0)^(1)dx int_(0)^(x)e^((y)/(x))dy