Home
Class 12
MATHS
If the roots of ax^(2)+bx+c=0 are of the...

If the roots of `ax^(2)+bx+c=0` are of the form `(m)/(m-1) and (m+1)/(m),` then the value of `(a+b+c)^(2)` is

A

`b^(2)-2ac`

B

`2b^(2)-ac`

C

`b^(2)-4ac`

D

`2(b^(2)-2ac)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((a + b + c)^2\) given that the roots of the quadratic equation \(ax^2 + bx + c = 0\) are of the form \(\frac{m}{m-1}\) and \(\frac{m+1}{m}\). ### Step 1: Identify the roots The roots of the equation are: \[ r_1 = \frac{m}{m-1}, \quad r_2 = \frac{m+1}{m} \] ### Step 2: Calculate the sum of the roots Using the formula for the sum of the roots of a quadratic equation, we have: \[ r_1 + r_2 = -\frac{b}{a} \] Calculating \(r_1 + r_2\): \[ r_1 + r_2 = \frac{m}{m-1} + \frac{m+1}{m} \] To combine these fractions, we find a common denominator: \[ = \frac{m^2 + (m+1)(m-1)}{m(m-1)} = \frac{m^2 + (m^2 - 1)}{m(m-1)} = \frac{2m^2 - 1}{m(m-1)} \] Thus, we have: \[ -\frac{b}{a} = \frac{2m^2 - 1}{m(m-1)} \] ### Step 3: Calculate the product of the roots Using the formula for the product of the roots: \[ r_1 \cdot r_2 = \frac{c}{a} \] Calculating \(r_1 \cdot r_2\): \[ r_1 \cdot r_2 = \frac{m}{m-1} \cdot \frac{m+1}{m} = \frac{m+1}{m-1} \] Thus, we have: \[ \frac{c}{a} = \frac{m+1}{m-1} \] ### Step 4: Set up equations for \(b\) and \(c\) From the sum of the roots: \[ b = -a \cdot \frac{2m^2 - 1}{m(m-1)} \] From the product of the roots: \[ c = a \cdot \frac{m+1}{m-1} \] ### Step 5: Calculate \(a + b + c\) Now we can express \(a + b + c\): \[ a + b + c = a - a \cdot \frac{2m^2 - 1}{m(m-1)} + a \cdot \frac{m+1}{m-1} \] Factoring out \(a\): \[ = a \left(1 - \frac{2m^2 - 1}{m(m-1)} + \frac{m+1}{m-1}\right) \] ### Step 6: Simplify the expression To simplify: \[ = a \left(1 - \frac{2m^2 - 1}{m(m-1)} + \frac{m+1}{m-1}\right) \] Finding a common denominator for the terms inside the parentheses: \[ = a \left(\frac{m(m-1) - (2m^2 - 1) + (m+1)m}{m(m-1)}\right) \] This simplifies to: \[ = a \left(\frac{m^2 - m - 2m^2 + 1 + m^2 + m}{m(m-1)}\right) = a \left(\frac{0 + 1}{m(m-1)}\right) = \frac{a}{m(m-1)} \] ### Step 7: Calculate \((a + b + c)^2\) Now squaring the expression: \[ (a + b + c)^2 = \left(\frac{a}{m(m-1)}\right)^2 = \frac{a^2}{m^2(m-1)^2} \] ### Final Step: Conclusion Since we do not have specific values for \(a\), \(b\), or \(c\), we conclude that the value of \((a + b + c)^2\) depends on the parameters of the quadratic equation and the roots given.
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos
  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

IF the roots of ax^2 +bx +c=0 are of the form (m+1)/(m ) ,(m+2)/(m+1) then (a +b+c)^2 =

If the roots of the equation ax^(2)+bx+c=0 are in the ratio m:n then

If 1/(2-sqrt(-2)) is one of the roots of ax^(2)+bx+c = 0 , where a,b, c are real, then what are the values of a,b,c respectively ?