Home
Class 12
MATHS
3^((1)/(9)).9^((1)/(27)).27^((1)/(81)).8...

`3^((1)/(9)).9^((1)/(27)).27^((1)/(81)).81^((1)/(243))….oo=`

A

`sqrt3`

B

1

C

`(1)/(3)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(3^{\frac{1}{9}} \cdot 9^{\frac{1}{27}} \cdot 27^{\frac{1}{81}} \cdots\) as it goes to infinity, we can rewrite each term with a base of 3. ### Step 1: Rewrite each term The terms can be rewritten as: - \(9 = 3^2\) - \(27 = 3^3\) - \(81 = 3^4\) So, we have: \[ 3^{\frac{1}{9}} \cdot (3^2)^{\frac{1}{27}} \cdot (3^3)^{\frac{1}{81}} \cdots \] ### Step 2: Simplify the powers Now, we simplify the powers: \[ 3^{\frac{1}{9}} \cdot 3^{\frac{2}{27}} \cdot 3^{\frac{3}{81}} \cdots \] ### Step 3: Combine the bases Since the bases are the same, we can combine the exponents: \[ 3^{\left(\frac{1}{9} + \frac{2}{27} + \frac{3}{81} + \cdots\right)} \] ### Step 4: Find the general term of the exponent The general term can be expressed as: \[ \frac{n}{3^{n+1}} \quad \text{for } n = 1, 2, 3, \ldots \] ### Step 5: Sum the series Now, we need to find the sum of the series: \[ S = \frac{1}{9} + \frac{2}{27} + \frac{3}{81} + \cdots \] This can be rewritten as: \[ S = \sum_{n=1}^{\infty} \frac{n}{3^{n+1}} \] ### Step 6: Use the formula for the sum of an infinite series Using the formula for the sum of the series \(\sum_{n=1}^{\infty} n x^n = \frac{x}{(1-x)^2}\) for \(|x| < 1\), we set \(x = \frac{1}{3}\): \[ \sum_{n=1}^{\infty} n \left(\frac{1}{3}\right)^n = \frac{\frac{1}{3}}{\left(1 - \frac{1}{3}\right)^2} = \frac{\frac{1}{3}}{\left(\frac{2}{3}\right)^2} = \frac{\frac{1}{3}}{\frac{4}{9}} = \frac{3}{4} \] ### Step 7: Adjust for the factor of \(3^{-1}\) Since we have \(S = \frac{1}{3} \cdot \frac{3}{4} = \frac{1}{4}\), we can now substitute this back into our exponent: \[ S = \frac{1}{4} \] ### Step 8: Final expression Thus, we have: \[ 3^{\frac{1}{4}} = \sqrt[4]{3} \] ### Conclusion The final result of the infinite product is: \[ \sqrt[4]{3} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos
  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

((16)^((1)/(4)))/((27)^((1)/(3)))+((625)^((1)/(4)))/((81)^((1)/(4)))-(1)/((243)^((1)/(5)))=2

P=3^((1)/(3))3^((2)/(9))3^((3)/(27))...oo, then P^((1)/(3)) is

27^(1(1)/(3))times sqrt((1)/(9))-:81^((-1)/(4))=?

Find the value of 3^((4)/(log_(2)9))+27^((1)/(log_(49)9))+81^((1)/(log_(4)3))

1/3,4/9,7/(27),(10)/(81),?,(16)/(729)

Find the value of 9^((1)/(3)),9^((1)/(9)).9^((1)/(27))...up to oo

((0.3)^(1/3)(1/27)^(1/4)(9)^(1/6)(0.81)^(2/3))/((0.9)^(2/3)(3)^(-1/2)(243)^(-1/4))=

81^(1/4)xx9^(3//2)xx27^(- 4/3)=