Home
Class 12
MATHS
The value of int(1)^(e)(dx)/(6x(logx)^(2...

The value of `int_(1)^(e)(dx)/(6x(logx)^(2)+7x(logx)+2x)=`

A

`log_(e)((15)/(2))`

B

`log_(e)((6)/(5))`

C

`log_(e)((3)/(10))`

D

`(1)/(5)log_(e)((8)/(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{1}^{e} \frac{dx}{6x(\log x)^{2} + 7x \log x + 2x} \] we will follow these steps: ### Step 1: Factor out \( x \) from the denominator We can factor out \( x \) from the denominator: \[ I = \int_{1}^{e} \frac{dx}{x(6(\log x)^{2} + 7\log x + 2)} \] ### Step 2: Substitute \( t = \log x \) Next, we will make the substitution \( t = \log x \). Then, \( dx = e^t dt \) and when \( x = 1 \), \( t = 0 \) and when \( x = e \), \( t = 1 \). The integral becomes: \[ I = \int_{0}^{1} \frac{e^t dt}{e^t(6t^{2} + 7t + 2)} = \int_{0}^{1} \frac{dt}{6t^{2} + 7t + 2} \] ### Step 3: Factor the quadratic Now we need to factor the quadratic in the denominator \( 6t^{2} + 7t + 2 \). We look for two numbers that multiply to \( 12 \) (the product of \( 6 \) and \( 2 \)) and add to \( 7 \). The numbers \( 3 \) and \( 4 \) work: \[ 6t^{2} + 3t + 4t + 2 = 3t(2t + 1) + 2(2t + 1) = (2t + 1)(3t + 2) \] So we can rewrite the integral as: \[ I = \int_{0}^{1} \frac{dt}{(2t + 1)(3t + 2)} \] ### Step 4: Partial fraction decomposition Next, we will use partial fractions to decompose the integrand: \[ \frac{1}{(2t + 1)(3t + 2)} = \frac{A}{2t + 1} + \frac{B}{3t + 2} \] Multiplying through by the denominator \( (2t + 1)(3t + 2) \) gives: \[ 1 = A(3t + 2) + B(2t + 1) \] Expanding and rearranging: \[ 1 = (3A + 2B)t + (2A + B) \] Setting up the system of equations: 1. \( 3A + 2B = 0 \) 2. \( 2A + B = 1 \) From the second equation, we can express \( B \) in terms of \( A \): \[ B = 1 - 2A \] Substituting into the first equation: \[ 3A + 2(1 - 2A) = 0 \implies 3A + 2 - 4A = 0 \implies -A + 2 = 0 \implies A = 2 \] Substituting \( A = 2 \) back into the equation for \( B \): \[ B = 1 - 2(2) = 1 - 4 = -3 \] Thus, we have: \[ \frac{1}{(2t + 1)(3t + 2)} = \frac{2}{2t + 1} - \frac{3}{3t + 2} \] ### Step 5: Integrate Now we can integrate: \[ I = \int_{0}^{1} \left( \frac{2}{2t + 1} - \frac{3}{3t + 2} \right) dt \] Calculating the integrals separately: 1. \(\int \frac{2}{2t + 1} dt = 2 \cdot \frac{1}{2} \ln |2t + 1| = \ln |2t + 1|\) 2. \(\int \frac{3}{3t + 2} dt = 3 \cdot \frac{1}{3} \ln |3t + 2| = \ln |3t + 2|\) Thus, \[ I = \left[ \ln(2t + 1) - \ln(3t + 2) \right]_{0}^{1} \] ### Step 6: Evaluate the limits Evaluating at the limits: \[ I = \left( \ln(2 \cdot 1 + 1) - \ln(3 \cdot 1 + 2) \right) - \left( \ln(2 \cdot 0 + 1) - \ln(3 \cdot 0 + 2) \right) \] This simplifies to: \[ I = \left( \ln(3) - \ln(5) \right) - \left( \ln(1) - \ln(2) \right) = \ln(3) - \ln(5) + \ln(2) \] Using properties of logarithms: \[ I = \ln\left(\frac{3 \cdot 2}{5}\right) = \ln\left(\frac{6}{5}\right) \] ### Final Answer Thus, the value of the integral is: \[ \boxed{\ln\left(\frac{6}{5}\right)} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos
  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

int_(1)^(2)(dx)/(x(1+logx)^(2))

int_(1)^(e )(1)/(6x(log x)^(2)+7x log x + 2x)dx=

The value of int_(1)^(e^(2)) (dx)/(x(1+logx)^(2)) is

int_(1//e)^(e)(dx)/(x(logx)^(1//3))

int(dx)/(x[(logx)^(2)+4logx-1])=

int_(1)^(e)((logx)^(2))/(x)dx=?

int_(1)^(3)(logx)/((1+x)^(2))dx

int_(1)^(2)(logx)/(x)dx

int_(1)^(2)(logx)/(x)dx