Home
Class 12
MATHS
If 0lt alphaltpi, then the quadratic que...

If `0lt alphaltpi,` then the quadratic question `cos(alpha-1)x^(2)+x cosalpha+sinalpha=0`, has

A

both roots imaginary

B

only one root imaginary

C

only one root irrational

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 3

    MTG-WBJEE|Exercise CATEGORY 2 : SINGLE OPTION CORRECT TYPE|15 Videos
  • MODEL TEST PAPER 3

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    MTG-WBJEE|Exercise WB JEE Previous years questions (Category 3 : More than One Option correct type)|1 Videos

Similar Questions

Explore conceptually related problems

If 0^(@)ltalphalt90^(@) , then solve the equation (sinalpha)/(1-cosalpha)+(sinalpha)/(1+cosalpha)=4 .

The number of values of the parameter alpha in [0, 2pi] for which the quadratic function (sin alpha)x^(2)+(2cosalpha)x+(1)/(2)(cos alpha+sinalpha) is the square of a linear funcion is

If sin.alpha/2+cos.alpha/2=1.4, then: sinalpha=

If 0ltalphalt pi/4 equation (x-sinalpha)(x-cosalpha)-2=0 has (A) both roots in (sinalpha, cosalpha) (B) both roots in (cosalpha, sinalpha) (C) one root in (-oo, cosalpha) and other in (sinalpha, oo) (D) one root in (-oo,sinalpha) and other in (cosalpha, oo)

If 0 lt alpha lt pi/2 then show that tanalpha+cotgtsinalpha+cosalpha

The minimum integral value of alpha for which the quadratic equation (cot^(-1)alpha)x^(2)-(tan^(-1)alpha)^(3//2)x+2(cot^(-1)alpha)^(2)=0 has both positive roots

If [int_0^1(dt)/(t^2+2tcosalpha+1)]x^2-[int_- 3^3(t^2sin2t)/(t^2+1)dt]x-2=0 (0 < alpha < pi) then the value of x is (i)+-sqrt((alpha)/(2sinalpha)) (ii)+-sqrt((2sinalpha)/alpha) (iii) +-sqrt(alpha/sinalpha) (iv) +-2sqrt(sinalpha/alpha)

int(cos2x-cos2alpha)/(cosx-cosalpha)dx

Statement 1: The system of linear equations x+(sinalpha)y+(cosalpha)z=0x+(cosalpha)y+(sinalpha)z=0x-(sinalpha)y-(cos\ alpha)z=0 has a non-trivial solution for only value of alpha lying the interval (0,\ pi/2) Statement 2: The equation in\ alpha |cosalphas in\ alphacosalphasinalphacosalphasinalphacosalpha-sinalpha-cosalpha|=0 has only one solution lying in the interval (0,\ pi/2) Statement 1 is True: Statement 2 is True; Statement 2 is a correct explanation for statement 1 Statement 1 is true, Statement 2 is true;2 Statement 2 not a correct explanation for statement 1. Statement 1 is true, statement 2 is false Statement 1 is false, statement 2 is true