Home
Class 12
MATHS
If theta in((pi)/(4),(pi)/(2)) and f(the...

If `theta in((pi)/(4),(pi)/(2)) and f(theta)=sec 2theta- tan 2theta`, then `f((pi)/(4)-theta)=`

A

`tan theta`

B

`cottheta`

C

`sec 2 theta`

D

`tan2theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f\left(\frac{\pi}{4} - \theta\right) \) given that \( f(\theta) = \sec(2\theta) - \tan(2\theta) \). ### Step-by-Step Solution: 1. **Identify the Function**: We start with the function: \[ f(\theta) = \sec(2\theta) - \tan(2\theta) \] 2. **Substitute \( \frac{\pi}{4} - \theta \)**: We need to evaluate: \[ f\left(\frac{\pi}{4} - \theta\right) = \sec\left(2\left(\frac{\pi}{4} - \theta\right)\right) - \tan\left(2\left(\frac{\pi}{4} - \theta\right)\right) \] 3. **Simplify the Angles**: Calculate \( 2\left(\frac{\pi}{4} - \theta\right) \): \[ 2\left(\frac{\pi}{4} - \theta\right) = \frac{\pi}{2} - 2\theta \] Thus, we rewrite \( f\left(\frac{\pi}{4} - \theta\right) \): \[ f\left(\frac{\pi}{4} - \theta\right) = \sec\left(\frac{\pi}{2} - 2\theta\right) - \tan\left(\frac{\pi}{2} - 2\theta\right) \] 4. **Use Trigonometric Identities**: Using the identities: \[ \sec\left(\frac{\pi}{2} - x\right) = \csc(x) \quad \text{and} \quad \tan\left(\frac{\pi}{2} - x\right) = \cot(x) \] We can rewrite: \[ f\left(\frac{\pi}{4} - \theta\right) = \csc(2\theta) - \cot(2\theta) \] 5. **Express in Terms of Sine and Cosine**: Recall that: \[ \csc(2\theta) = \frac{1}{\sin(2\theta)} \quad \text{and} \quad \cot(2\theta) = \frac{\cos(2\theta)}{\sin(2\theta)} \] Thus: \[ f\left(\frac{\pi}{4} - \theta\right) = \frac{1 - \cos(2\theta)}{\sin(2\theta)} \] 6. **Use the Identity for Sine**: We know that: \[ 1 - \cos(2\theta) = 2\sin^2(\theta) \] Therefore: \[ f\left(\frac{\pi}{4} - \theta\right) = \frac{2\sin^2(\theta)}{\sin(2\theta)} \] 7. **Substitute for \( \sin(2\theta) \)**: Using the double angle identity: \[ \sin(2\theta) = 2\sin(\theta)\cos(\theta) \] We can simplify: \[ f\left(\frac{\pi}{4} - \theta\right) = \frac{2\sin^2(\theta)}{2\sin(\theta)\cos(\theta)} = \frac{\sin(\theta)}{\cos(\theta)} = \tan(\theta) \] ### Final Result: Thus, we find that: \[ f\left(\frac{\pi}{4} - \theta\right) = \tan(\theta) \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 3

    MTG-WBJEE|Exercise CATEGORY 2 : SINGLE OPTION CORRECT TYPE|15 Videos
  • MODEL TEST PAPER 3

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    MTG-WBJEE|Exercise WB JEE Previous years questions (Category 3 : More than One Option correct type)|1 Videos

Similar Questions

Explore conceptually related problems

sec theta+tan theta=tan((pi)/(4)+(theta)/(2))

Prove that sec theta + tan theta = tan (pi/4 + theta/2)

The value of int_(-(pi)/(4))^((pi)/(4))log(sec theta-tan theta)d theta

sec((pi)/(4)+theta)sec((pi)/(4)-theta)=2sec2 theta

int_(0)^((pi)/(2))(sec theta-tan theta)d theta

If tan((pi)/(4)+theta)+tan((pi)/(4)-theta)=4 then theta=

lim_(theta rarr pi/2)(sec theta-tan theta)/(pi-2 theta)

tan((pi)/(4)+theta)-tan((pi)/(4)-theta)=2tan2 theta

(sec theta-tan theta)/(sec theta+tan theta)=cos^(2)((pi)/(4)+(theta)/(2))