Home
Class 12
MATHS
If int(0)^(x)f(z)dz=x+int(x)^(1)zf(z)dz,...

If `int_(0)^(x)f(z)dz=x+int_(x)^(1)zf(z)dz`, then `int_(1)^(2)f(x)dx` equals

A

`1+x`

B

`log((2)/(3))`

C

`log3`

D

`log((3)/(2))`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 3

    MTG-WBJEE|Exercise CATEGORY 2 : SINGLE OPTION CORRECT TYPE|15 Videos
  • MODEL TEST PAPER 3

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    MTG-WBJEE|Exercise WB JEE Previous years questions (Category 3 : More than One Option correct type)|1 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(1)f(x)dx=1 and int_(1)^(2)f(y)dy=2 , then int_(0)^(2)f(z)dz=

if int_(0)^(1)f(x)dx=1 and f(2x)=2f(x) then 3int_(1)^(2)f(x)dx is equal to

If int_(0)^(3)f(x)dx=1 and int_(0)^(4)f(y)dy=2 , then int_(3)^(4)f(z)dz=

int_(0)^(a)f(2a-x)dx=m and int_(0)^(a)f(x)dx=n then int_(0)^(2a)f(x)dx is equal to

If int_(0)^(1)f(x)dx=1, int_(0)^(1)x f(x)dx=a and int_(0)^(1)x^(2)f(x)dx=a^(2) , then : int_(0)^(1)(a-x)^(2)f(x)dx=

If int_(-1)^(1)f(x)dx=0 then

int_(n)^(n+1)f(x)dx=n^(2)+n then int_(-1)^(1)f(x)dx=

Let f(x) and g(x) be any two continuous function in the interval [0, b] and 'a' be any point between 0 and b. Which satisfy the following conditions : f(x)=f(a-x), g(x)+g(a-x)=3, f(a+b-x)=f(x) . Also int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx, int_(a)^(b)f(x)dx=int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx int_(0)^(a)f(x)dx=p" then " int_(0)^(a)f(x)g(x)dx is

if f(x)=|x-1| then int_(0)^(2)f(x)dx is