Home
Class 12
MATHS
cos^(2)A+cos^(2)(B-A)-2cosAcosBcos(A-B)=...

`cos^(2)A+cos^(2)(B-A)-2cosAcosBcos(A-B)=`

A

`cos2A`

B

`sin^(2)A`

C

`sin^(2)B`

D

`cos^(2)B`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos^2 A + \cos^2 (B - A) - 2 \cos A \cos B \cos (A - B) \), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \cos^2 A + \cos^2 (B - A) - 2 \cos A \cos B \cos (A - B) \] ### Step 2: Use the cosine subtraction formula Recall the cosine subtraction formula: \[ \cos (B - A) = \cos B \cos A + \sin B \sin A \] We can express \( \cos^2 (B - A) \) using the identity: \[ \cos^2 (B - A) = \cos^2 B \cos^2 A + \sin^2 B \sin^2 A + 2 \cos B \cos A \sin B \sin A \] ### Step 3: Substitute the cosine subtraction formula Substituting \( \cos^2 (B - A) \) into the expression: \[ \cos^2 A + \left( \cos^2 B \cos^2 A + \sin^2 B \sin^2 A + 2 \cos B \cos A \sin B \sin A \right) - 2 \cos A \cos B \cos (A - B) \] ### Step 4: Simplify the expression Now we simplify: \[ \cos^2 A + \cos^2 B \cos^2 A + \sin^2 B \sin^2 A + 2 \cos B \cos A \sin B \sin A - 2 \cos A \cos B \cos (A - B) \] ### Step 5: Combine like terms Notice that \( -2 \cos A \cos B \cos (A - B) \) can be simplified using the cosine addition formula: \[ \cos (A - B) = \cos A \cos B + \sin A \sin B \] Thus, we can rewrite: \[ -2 \cos A \cos B (\cos A \cos B + \sin A \sin B) \] ### Step 6: Final simplification After substituting and simplifying, we can see that the terms will reduce down to: \[ \cos^2 A + \cos^2 B - \cos^2 A - \cos^2 B = 0 \] ### Final Answer Thus, the expression simplifies to: \[ \cos^2 A + \cos^2 (B - A) - 2 \cos A \cos B \cos (A - B) = 0 \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 3

    MTG-WBJEE|Exercise CATEGORY 2 : SINGLE OPTION CORRECT TYPE|15 Videos
  • MODEL TEST PAPER 3

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    MTG-WBJEE|Exercise WB JEE Previous years questions (Category 3 : More than One Option correct type)|1 Videos

Similar Questions

Explore conceptually related problems

Prove that: cos^(2)A+cos^(2)B-2cos A cos B cos(A+B)=sin^(2)(A+B)

cos^(2)(A-B)+cos^(2)B-2cos(A-B).cosA.cosB=?

A+B=C rArr cos^(2)A+cos^(2)B+cos^(2)C-2cos A cos B cos C=

Prove that: sin^(2)A=cos^(2)(A-B)+cos^(2)B-2cos(A-B)cos A cos B

If A+B+C= 360^(@) ,prove that: 1-cos^(2)A-cos^(2)B-cos^(2)C+2cosA cos B cos C=0

The expression cos^(2)(A-B)+cos^(2)B-2cos(A-B)cosAcosB is

If A+B+C=180, prove that cos^(2)A+cos^(2)B+cos^(2)C=1-2cos A cos B cos C

In a Delta ABC,a(cos^(2)B+cos^(2)C)+cos A(c cos C+b cos B)=

If : A+B+C=pi, "then" : 1-cos^(2) A-cos^(2)B-cos^(2)C= A) 2 cos A * cos B * cos C B) 2 sin A * cos B * cos C C) 2 cos A * sin B * cos C D) 2 cos A * cos B * sin C

cos^(2)A+cos^(2)B+cos^(2)C=1-cos A cos B cos C prove that