Home
Class 12
MATHS
Delta=|(cos""(theta)/(2),1,1),(1,cos""(t...

`Delta=|(cos""(theta)/(2),1,1),(1,cos""(theta)/(2),-cos""(theta)/(2)),(-cos""(theta)/(2),1,1)|` lies in the interval

A

`[2, 4]`

B

`[0, 4]`

C

`[1, 3]`

D

`[-2, 2]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the determinant \( \Delta \) given by: \[ \Delta = \begin{vmatrix} \frac{\cos(\theta)}{2} & 1 & 1 \\ 1 & \frac{\cos(\theta)}{2} & -\frac{\cos(\theta)}{2} \\ -\frac{\cos(\theta)}{2} & 1 & 1 \end{vmatrix} \] ### Step 1: Simplifying the Determinant We can perform column operations to simplify the determinant. Let's subtract the second column from the third column: \[ \Delta = \begin{vmatrix} \frac{\cos(\theta)}{2} & 1 & 0 \\ 1 & \frac{\cos(\theta)}{2} & -\cos(\theta) \\ -\frac{\cos(\theta)}{2} & 1 & 0 \end{vmatrix} \] ### Step 2: Expanding the Determinant Now we can expand the determinant along the third column: \[ \Delta = 0 \cdot \begin{vmatrix} 1 & 1 \\ 1 & \frac{\cos(\theta)}{2} \end{vmatrix} - (-\cos(\theta)) \cdot \begin{vmatrix} \frac{\cos(\theta)}{2} & 1 \\ -\frac{\cos(\theta)}{2} & 1 \end{vmatrix} \] ### Step 3: Calculating the 2x2 Determinant Now we calculate the 2x2 determinant: \[ \begin{vmatrix} \frac{\cos(\theta)}{2} & 1 \\ -\frac{\cos(\theta)}{2} & 1 \end{vmatrix} = \left(\frac{\cos(\theta)}{2} \cdot 1\right) - \left(1 \cdot -\frac{\cos(\theta)}{2}\right) = \frac{\cos(\theta)}{2} + \frac{\cos(\theta)}{2} = \cos(\theta) \] ### Step 4: Substituting Back Substituting back into the determinant expression: \[ \Delta = \cos(\theta) \cdot \cos(\theta) = \cos^2(\theta) \] ### Step 5: Finding the Range of \( \Delta \) Since \( \cos^2(\theta) \) varies from 0 to 1 as \( \theta \) varies, we can multiply this by 4 (as per the operations we did earlier): \[ \Delta = 4 \cos^2(\theta) \] ### Step 6: Final Range of \( \Delta \) Thus, the range of \( \Delta \) is: \[ \Delta \in [0, 4] \] ### Conclusion The determinant \( \Delta \) lies in the interval \( [0, 4] \).
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 3

    MTG-WBJEE|Exercise CATEGORY 2 : SINGLE OPTION CORRECT TYPE|15 Videos
  • MODEL TEST PAPER 3

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    MTG-WBJEE|Exercise WB JEE Previous years questions (Category 3 : More than One Option correct type)|1 Videos

Similar Questions

Explore conceptually related problems

If theta, phi epsilon R , then the determinant Delta=|(cos theta, - sin theta, 1),(sin theta, cos theta, 1),(cos(theta+phi),-sin(theta+phi),0)| lies in the interval

1+cos theta=2cos^(2)theta

(tan^(2)theta)/((sec theta-1)^(2))=(1+cos theta)/(1-cos theta)

(sin^(8)theta-cos^(8)theta)/(cos2theta(1+cos^(2)2theta))=?

For -(pi)/(2)

(1)/(1-cos theta)-(1)/(1+cos theta)=(2cos theta)/(sin^(2)theta)=2cot theta xx csc

prove that (cos theta)/(1-sin theta)+(cos theta)/(1+sin theta)=(2)/(cos theta)

Prove (cos ec theta-cot theta)^(2)=(1-cos theta)/(1+cos theta)

root(7)((1+cos theta)/(1-cos theta))+sqrt((1-cos theta)/(1+cos theta))=2cos ec theta