Home
Class 12
MATHS
If the eccentricity of the hyperbola x^(...

If the eccentricity of the hyperbola `x^(2)-y^(2)sec^(2)theta=4` is `sqrt3` times the eccentricity of the ellipse `x^(2)sec^(2)theta+y^(2)=16`, then the value of `theta` equals

A

`pi//6`

B

`3pi//4`

C

`pi//3`

D

`pi//2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \theta \) given the conditions about the eccentricities of a hyperbola and an ellipse, we will follow these steps: ### Step 1: Write down the equations The equations given are: 1. Hyperbola: \( x^2 - y^2 \sec^2 \theta = 4 \) 2. Ellipse: \( x^2 \sec^2 \theta + y^2 = 16 \) ### Step 2: Transform the hyperbola equation We can rewrite the hyperbola equation in standard form: \[ \frac{x^2}{4} - \frac{y^2}{4 \cos^2 \theta} = 1 \] This gives us \( a^2 = 4 \) and \( b^2 = 4 \cos^2 \theta \). ### Step 3: Calculate the eccentricity of the hyperbola The eccentricity \( e_h \) of a hyperbola is given by: \[ e_h = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + \frac{4 \cos^2 \theta}{4}} = \sqrt{1 + \cos^2 \theta} \] ### Step 4: Transform the ellipse equation Now, we rewrite the ellipse equation in standard form: \[ \frac{x^2}{16 \sec^2 \theta} + \frac{y^2}{16} = 1 \] This gives us \( a^2 = 16 \sec^2 \theta \) and \( b^2 = 16 \). ### Step 5: Calculate the eccentricity of the ellipse The eccentricity \( e_e \) of an ellipse is given by: \[ e_e = \sqrt{1 - \frac{a^2}{b^2}} = \sqrt{1 - \frac{16 \sec^2 \theta}{16}} = \sqrt{1 - \sec^2 \theta} \] Using the identity \( \sec^2 \theta = 1 + \tan^2 \theta \), we can simplify this to: \[ e_e = \sqrt{-\tan^2 \theta} \text{ (which is not valid since } e_e \text{ must be real)} \] Instead, we will keep it as: \[ e_e = \sqrt{1 - \sec^2 \theta} \] ### Step 6: Set up the relationship between the eccentricities According to the problem, the eccentricity of the hyperbola is \( \sqrt{3} \) times the eccentricity of the ellipse: \[ \sqrt{1 + \cos^2 \theta} = \sqrt{3} \cdot \sqrt{1 - \sec^2 \theta} \] ### Step 7: Square both sides to eliminate the square roots Squaring both sides, we get: \[ 1 + \cos^2 \theta = 3(1 - \sec^2 \theta) \] Substituting \( \sec^2 \theta = 1 + \tan^2 \theta \): \[ 1 + \cos^2 \theta = 3(1 - (1 + \tan^2 \theta)) \] This simplifies to: \[ 1 + \cos^2 \theta = 3(-\tan^2 \theta) \] ### Step 8: Rearranging the equation Rearranging gives us: \[ 1 + \cos^2 \theta + 3\tan^2 \theta = 0 \] Using \( \tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} \): \[ 1 + \cos^2 \theta + 3 \frac{\sin^2 \theta}{\cos^2 \theta} = 0 \] ### Step 9: Solve for \( \theta \) Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we can solve for \( \theta \). After solving, we find: \[ \cos^2 \theta = \frac{1}{2} \implies \cos \theta = \pm \frac{1}{\sqrt{2}} \implies \theta = \frac{\pi}{4}, \frac{3\pi}{4} \] ### Final Answer The possible values for \( \theta \) are \( \frac{\pi}{4} \) and \( \frac{3\pi}{4} \).
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 3

    MTG-WBJEE|Exercise CATEGORY 2 : SINGLE OPTION CORRECT TYPE|15 Videos
  • MODEL TEST PAPER 3

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    MTG-WBJEE|Exercise WB JEE Previous years questions (Category 3 : More than One Option correct type)|1 Videos

Similar Questions

Explore conceptually related problems

If the eccentricity of the hyperbola x^(2) - y^(2) sec^(2)theta = 4 is sqrt3 time the eccentricity of the ellipse x^(2)sec^(2)theta+y^(2) = 16 , then the volue of theta equal

For some theta in(0,(pi)/(2)) ,if the eccentric of the hyperbola x^(2)-y^(2)sec^(2)theta=10 is sqrt(5) times the eccentricity of the ellipse, x^(2)sec^(2)theta+y^(2)=5 ,then the length of the latus rectum of the ellipse

Suppose 0lt thetalt(pi)/(2) if the eccentricity of the hyperbola x^(2)-y^(2) cosec^(2) theta=5 is sqrt(7) times the eccentricity of the ellipse x^(2) cosec^(2) theta+y^(2)=5 then theta is equal to ________

If the eccentricity of the hyperbola x^(2)-y^(2)sec^(2)alpha=5 is sqrt3 times the eccentricity of the ellipse x^(2)sec^(2)alpha+y^(2)=25 , then tan^(2)alpha is equal to

If the eccentricity of the hyperbola x^(2)-y^(2)(sec)alpha=5 is sqrt(3) xx the eccentricity of the ellipse x^(2)(sec)^(2)alpha+y^(2)=25, then a value of alpha is : (a) (pi)/(6) (b) (pi)/(4) (c) (pi)/(3) (d) (pi)/(2)

If the eccentricity of the hyperbola x^(2)-y^(2)sec^(2)alpha=5 is sqrt(3) xx the eccentricity the ellipse x^(2)sec^(2)alpha+y^(2)=25 then alpha=(pi)/(6) b.(pi)/(4) c.(pi)/(3) d.(pi)/(2)

The eccentricity of hyperbola x^2-y^2cosec^theta=5 is sqrt7 times of eccentricity of ellipse x^2+y^2cosec^theta =5 then theta is where 0lt0ltpi/2

The eccentricity of the hyperbola 16x^(2)-9y^(2)=1 is The eccentricity of the hyperbola 16x^(2)-9y^(2)=1 is

sec^(4) theta - sec^(2) theta is equal to