Home
Class 12
MATHS
Let vecV=2hati+hatj-hatk and vecW=hati+3...

Let `vecV=2hati+hatj-hatk` and `vecW=hati+3hatk`. It `vecU` is a unit vector, then the maximum value of the scalar triple product `[(vecU, vecV, vecW)]` is

A

`-1`

B

`sqrt(10)+sqrt6`

C

`sqrt(59)`

D

`sqrt(60)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 3

    MTG-WBJEE|Exercise CATEGORY 2 : SINGLE OPTION CORRECT TYPE|15 Videos
  • MODEL TEST PAPER 3

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    MTG-WBJEE|Exercise WB JEE Previous years questions (Category 3 : More than One Option correct type)|1 Videos

Similar Questions

Explore conceptually related problems

Let vecV = 2hati +hatj - hatk and vecW= hati + 3hatk . if vecU is a unit vector, then the maximum value of the scalar triple product [ vecU vecV vecW] is

Let vecV=2hati+hatj-hatk and vecW=hati+3hatk. If vecU is a unit vector then the maximum value of the scalar triple product [vecU vecV vecW] is (A) -1 (B) sqrt(10)+sqrt(6) (C) sqrt(59) (D) sqrt(60)

Let vecu=2hati-hatj+hatk, vecv=-3hatj+2hatk be vectors and vecw be a unit vector in the xy-plane. Then the maximum possible value of |(vecu xx vecv)|.|vecw| is

Let vec(U)=hati,hatj,vecV=hati-hatjand vec(W)=3hati+5hatj+3hatk. If hat(n) =0 then |vecW.hatn| is equal to

Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj - hatk be three vectors. A vectors vecv in the plane of veca and vecb , whose projection on vecc is 1/sqrt3 is given by

Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj - hatk be three vectors. A vectors vecv in the plane of veca and vecb , whose projection on vecc is 1/sqrt3 is given by

Let vecu = 2hati - hatj + hatk, vecv = -3hatj + 2hatk be vectors in R^(3) and vecw be a unit vector in the xy-plane. Then the maximum possible value of |(vecu xx vecv).vecw| is-

Let vecu= hati+hatj, vecv = hati -hatj and vecw = hati+2hatj+3hatk . If hatn is a unit vector such that vecu.hatn =0 and vecv.hatn=0 then find the value of |vecw.hatn|

Let vecu=hai+hatj,vecv=hati-hatj and vecw=hati+2hatj+3hatk . If hatn isa unit vector such that vecu.hatn=0 and vecv.hatn=0, |vecw.hatn| is equal to (A) 0 (B) 1 (C) 2 (D) 3