Home
Class 11
MATHS
Using binomial theorem, evaluate : (102)...

Using binomial theorem, evaluate : `(102)^5`

Text Solution

AI Generated Solution

To evaluate \( (102)^5 \) using the Binomial Theorem, we can express \( 102 \) as \( 100 + 2 \). The Binomial Theorem states that: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] In our case, \( a = 100 \), \( b = 2 \), and \( n = 5 \). Therefore, we can write: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NCERT ENGLISH|Exercise SOLVED EXAMPLES|17 Videos
  • BINOMIAL THEOREM

    NCERT ENGLISH|Exercise EXERCISE 8.2|6 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT ENGLISH|Exercise All Questions|75 Videos

Similar Questions

Explore conceptually related problems

Using binomial theorem, evaluate : (101)^4

Using the binomial theorem, evaluate (102)^5 .

Using binomial theorem, evaluate : (99)^5

Using binomial theorem, evaluate : (96)^3

Using binomial theorem, evaluate : (999)^(3) .

Byusing binomial theorem evaluate (i) (107)^(5) , (ii) (55)^(3)

Using Binomial theorem, evaluate (0.99)^15 correct to four places of decimal.

Using binomial theorem compute : (102)^6

Using binomial theorem compute : (10. 1)^5

Use binomial theorem to evaluate (10.1)^(5) .