Home
Class 11
MATHS
Expand of the expression : (2/x-x/2)^5...

Expand of the expression : `(2/x-x/2)^5`

Text Solution

AI Generated Solution

To expand the expression \((\frac{2}{x} - \frac{x}{2})^5\) using the Binomial Theorem, we can follow these steps: ### Step 1: Identify \(a\) and \(b\) In the expression \((\frac{2}{x} - \frac{x}{2})^5\), we can identify: - \(a = \frac{2}{x}\) - \(b = -\frac{x}{2}\) ### Step 2: Apply the Binomial Theorem ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NCERT ENGLISH|Exercise SOLVED EXAMPLES|17 Videos
  • BINOMIAL THEOREM

    NCERT ENGLISH|Exercise EXERCISE 8.2|6 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT ENGLISH|Exercise All Questions|75 Videos

Similar Questions

Explore conceptually related problems

Expand of the expression : (2x-3)^6

Expand of the expression : (1-2x)^5

Expand of the expression : (x/3+1/x)^5

Expand of the expression : (x+1/x)^6

Write the numerical coefficient of each term of the expression : x^(4)-5xy^(2)+7x^(2)-(2)/(3)x-(1)/(2) .

Graph the expression 4-5x-x^(2) .

For all real values of x, the maximum value of the expression 3-5x-2x^(2) is

The minimum value of the expression 2 ^(x) + 2 ^(2x +1) + (5)/(2 ^(x)) ,x in R is :

If x in R , the least value of the expression (x^(2)-6x+5)/(x^(2)+2x+1) is

When x=5 and y=2 , the expression (xy)/(70)+(9)/(5(x+y))+(1)/(x+y)=?