Home
Class 11
MATHS
Find (x+1)^6+(x-1)^6. Hence or otherwise...

Find `(x+1)^6+(x-1)^6`. Hence or otherwise evaluate `(sqrt(2)+1)^6+(sqrt(2)-1)^6`.

Text Solution

AI Generated Solution

To solve the problem, we need to find the value of \((x+1)^6 + (x-1)^6\) and then evaluate \((\sqrt{2}+1)^6 + (\sqrt{2}-1)^6\). ### Step 1: Expand \((x+1)^6\) and \((x-1)^6\) using the Binomial Theorem The Binomial Theorem states that: \[ (a + b)^n = \sum_{r=0}^{n} \binom{n}{r} a^{n-r} b^r \] ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NCERT ENGLISH|Exercise SOLVED EXAMPLES|17 Videos
  • BINOMIAL THEOREM

    NCERT ENGLISH|Exercise EXERCISE 8.2|6 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT ENGLISH|Exercise All Questions|75 Videos

Similar Questions

Explore conceptually related problems

Find (x+1)^6+(x-1)^6 . Hence evaluate (sqrt(2)+1)^6+(sqrt(2)-1)^6 .

Find the value of (sqrt(2)+1)^6-(sqrt(2)-1)^6dot

Find (1+x)^(6) - (1-x)^(6) . Hence evaluate (1+sqrt3)^(6) - (1-sqrt3)^(6)

Evaluate the following: \ (sqrt(2)+1)^6+(sqrt(2)-1)^6

Find (1+x)^(4) + (1-x)^(4) . Hence evaluate (sqrt2+1)^(4) + (sqrt2-1)^(4)

Find (x+a)^(5)+(x-a)^(5) . Hence, evaluate (sqrt(6)+sqrt(7))^(5)+(sqrt(6)-sqrt(7))^(5)

1. Find (sqrt6-1)(-sqrt6-1)

Evaluate int_0^1x^6sqrt(1-x^2) dx

Using binomial theorem, write the value of (a+b)^(6) + (a-b)^(6) and hence find the value of ( sqrt(3) + sqrt(2) )^(6) + ( sqrt(3) - sqrt(2) )^(6) .

Evaluate: int(x^2)/(sqrt(1-x^6))dx